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a

Abstract

Highly non-ideal explosives usually react expressively below their ideal velocities of detonation. In these 
cases, dimensional effects and product heterogeneities become important to proper model their respective detonation 
state. Although Direct Numerical Simulation (DNS) techniques can provide a complete and exact solution for 
this problem, their actual computation cost are still not practical for industrial applications. In order to minimize 
these constrains, a simplified two-dimensional steady non-ideal detonation model for cylindrical stick explosives 
is presented. Based on an ellipsoidal shock shape approach (ESSA), the proposed model combines the quasi-
one-dimensional theory for the axial flow solution with the unconfined sonic post-flow conditions at the edge of 
the explosive. Once calibrated, the model offers the possibility to predict the non-ideal detonation state for any 
charge diameter, resulting in a full mapping of the diameter-effect curve of the explosive. In addition, the effect 
of the inert confiner on the detonation flow is calculated by coupling a mechanistic confinement approach with 
the ESSA model. Thus, the proposed engineering approach is used to model the main properties of one of the 
most common ammonium nitrate-based explosive used in mining and quarrying industries, including the complete 
axial flow solution.
Keywords: Non-ideal detonation; Rock blasting; Commercial explosives; Modelling.

Modelagem de detonações não-ideais de explosivos comerciais

Resumo

Explosivos altamente não-ideais tendem a reagir com velocidades de detonação expressivamente inferiores às 
suas velocidades ideais. Nesses casos, os efeitos dimensionais do problema e heterogeneidades dos produtos se tornam 
fundamentais para realizar, apropriadamente, a modelagem dos seus respectivos estados de detonação. Ainda que as 
simulações numéricas diretas (DNS) possam prover uma completa e exata solução para esse problema, seu alto custo 
computacional ainda é um fator restritivo para sua aplicação prática na indústria. A fim de minimizar estas restrições, 
um modelo de detonação não-ideal estacionário bidimensional para explosivos cilíndricos é desenvolvido. Baseado na 
aproximação elipsoidal da frente de choque (ESSA), o modelo proposto se fundamenta na teoria quasi-unidimensional 
para a solução do fluxo reativo axial, combinando o critério de fluxo sônico após o choque com algumas condições 
limites na borda da carga explosiva. Uma vez calibrado, o modelo oferece a possibilidade de prever o estado não-ideal de 
detonação em qualquer diâmetro de carga, resultando no mapeamento completo da curva do efeito-diâmetro do explosivo. 
Adicionalmente, o efeito do material confinante na detonação é calculado ao acoplar uma aproximação mecanicista 
do confinamento ao modelo ESSA. Portanto, o modelo proposto é usado para modelar as principais propriedades de 
um dos explosivos baseados em nitrato de amônio mais comuns na indústria mineira e pedreiras, incluindo a completa 
descrição do fluxo axial.
Palavras-chave: Detonação no-ideal; Desmonte de rochas; Explosivos comerciais; Modelagem.
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replacement of the divergent term – which is unknown – by 
the shock curvature. Since its development, the Q1D model 
has been demonstrating excellent results regarding the axial 
flow solutions, even in highly non-ideal detonations [5].

The mathematical foundation of the Q1D theory is 
discussed elsewhere [1,10,11]. Thus, the resulting set of 
ordinary differential equations are
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where nu  is the normal particle velocity; ρ  is the density; 
nD  is the normal velocity of detonation; c  is the sound 

speed; Q  is the heat of explosion; γ  is the adiabatic gamma 
and W  is the reaction rate.

The set of ordinary differential equations form an 
eigenvalue problem in κ  or nD  (Equations 2, 3 and 4). The 
most common solution strategy is the shooting method subjected 
to the jump shock and generalized CJ conditions [1,12,13]. 
In this paper, the following quadratic pseudo-polytropic 
equation of state is used
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where ρ  is the density; oρ  is the initial density Q  is the 
heat of reaction; *γ  is the quadratic gamma; oγ , 1γ and 2γ  
are coefficients obtained from an ideal thermodynamic 
detonation code. On the other hand, the reaction rate equation 
is given by a simple pressure-dependent equation
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where n, m  and τ  are reaction rate parameters and refP  is a 
reference pressure. Assuming a strong shock approximation, 
the pressure P  can be expressed as
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2.2 Two-dimensional expansion: an 
ellipsoidal shock shape approach

Experimental shock front measurements – supported 
by Direct Numerical Simulations – show evidence that it can 
be well represented by the following arc of ellipse [1,14]
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1 Introduction

Ammonium nitrate-based explosives are the most 
common source of energy used for rock fragmentation 
and heave. Their nature, composition and heterogeneities, 
aligned with other characteristics such as multi-dimensional 
effects and confinement materials, result into a very complex 
detonation process, with a highly non-ideal behavior. This 
intrinsically coupled phenomena is still a matter of research 
and discussion [1-7]. A proper mathematical description of 
non-ideal detonations requires models where most of these 
parameters are considered. They must be able to describe 
the multi-dimensional reactive flow solution of the problem, 
including pressure profiles, densities and others such as 
reaction progress and detonation velocities. Several models 
have been developed for this purpose, such as some classes 
of direct numerical simulations (DNS) techniques, which are 
still computationally expensive for a daily-basis application, 
and a sort of quasi-unidimensional and bidimensional models, 
like the slightly divergent flow [8] or straight streamline 
approximation [9].

In this paper, a non-ideal detonation model based 
on the Ellipsoidal Shock Shape Approach (ESSA) is used 
to describe the detonation process. The ESSA model is 
coupled with the Q1D Theory [1] for a proper description 
of the axisymmetric detonation flow. Once the axial solution 
is known, the two-dimensional extension is carried out via 
an ellipsoidal shock shape approach. However, although the 
explosive-rock interaction could be especially challenged, 
when combined with a mechanistic model for the confiner 
material, these models could predict important properties 
of the resulting detonation structure.

2 Methodology

2.1 Governing equations

The reactive Euler equations for the conservation of 
mass, momentum and energy (Equation 1)
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are often used to describe non-ideal detonations, where u  
is the velocity; ρ  is the density; p  is the pressure; E  is 
the internal energy; λ  is the reaction progress ( 0λ = , for an 
unreacted product and 1λ =  for a complete reaction process); 
and W  is the reaction rate, and the operator / /D Dt t= ∂ ∂ + ⋅∇u . 
The governing equations are closed by defining the equation 
of state ( ), ,E P ρ λ  and the reaction rate ( ), ,W P ρ λ .

The governing equations (Equation 1) can be further 
reduced to describe the axial flow solution of the problem. 
Although different approaches are available, such as the 
slightly divergent flow theory [8], the Q1D model [1] 
is adopted in this study. One of its improvements is the 
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where z  and r  are the axial and radial directions, respectively; 
and α  e β  are the ellipse semi-axis, called in this study as 
the shock shape parameters.

In the ESSA model, the axial flow solution is intimately 
associated with the shape of the detonation shock front. This 
relationship is addressed by relating the axisymmetric curvature 
κ  with the shock shape parameters α  and β  via the second 
derivative of the shock front function fz , which express the 
curvature at any point along of the shock. Thus, for a given 
velocity of detonation nD  and reaction rate parameters , 
m  and τ , ''

fz  can be related to the axisymmetric cylinder 
shock front curvature axisκ , at 0r = , by
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where α  e β  are the shock shape parameters.
Equation 9 is essential to ensure a proper dependence 

between shock shape parameters and the axial solution. The 
next step is the definition of boundary conditions at the 
explosive’s edge. The first condition is defined in terms of 
the shock slope, where the post-shock flow must be exactly 
sonic [15], which means that the first derivative of Equation 
8 must be sonic at the unconfined charge edge,  r R= .

Nevertheless, the ellipsoidal shock shape hypothesis 
presents several possible sonic solutions at different charge 
radius. Therefore, an additional boundary condition must 
be defined at the explosive edge. This second condition is 
addressed by assuming that the charge radius R  is smaller 
than the semi-major axis of the ellipse fz , so that maxR β= . 
Hence, the ratio between the charge radius and the semi-
major axis can be established as /n maxf R R= , where nf  
is an expression which relates the degree of non-ideality 
of the explosive. Thus, nf  is defined as a dimensionless 
expression such as
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where λ  is the axial reaction progress at the sonic locus; m  
is a reaction rate parameter; oD  is the velocity of detonation; 
and CJD  is the thermodynamic ideal velocity of detonation; 

af  is a function dependent of the pressure and adiabatic 
coefficient.

Therefore, the calculation consists in determining 
the unconfined charge radius R  – for a given unconfined 
velocity of detonation and reaction rate parameters – by 
relating the axial flow solution, shock shape parameters and 
the sonic boundary condition at the charge edge.

2.3 Confinement model

In this paper, the confinement effect is structured 
according to the ideas proposed by Eyring et al. [16] and 
Souers et al. [17]. A simple inspection of unconfined and 
confined diameter-effect curves shows evidence of how the 

confinement tends to increase the detonation velocity for a 
given diameter. Hence, for a given velocity of detonation, the 
confinement effect allows its propagation in an even smaller 
explosive diameter. Thus, a ratio between the unconfined uR  
and confined cR  charge radius can be defined as
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where cf  is the confinement factor. This ratio must be 
proportional to the properties of the explosive, confiner material 
and its thickness. Here, the confinement is described by
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where cρ  and cC  are the density and the seismic velocity 
of the confiner, respectively; oρ  and oD  are the explosive 
density and the velocity of detonation, respectively; zf  is 
the artificial pre-compression factor due to the subsonic 
coupling ( 1zf =  for supersonic; and 1zf >  for subsonic).

3 Essa model validation

A simple polytropic equation of state with 3γ =  is 
examined for non-dimensional unconfined detonations. 
Calculations were performed for 0.5m =  and various n  (see 
Equation 6) and compared with Watt et al. [9] results. As 
can be seen in Figure 1a and b, diameter curve predictions 
for 0n =  and  1n =  are in very good agreement with DNS 
calculation. This is a good sign since the severest non-ideal 
detonation cases are very low state dependent [9].

In comparison with SSA model, the ESSA model 
seems to improve the overall diameter effect curve for larger 
radii, whereas it is almost equivalent for smaller diameters 
for 0n =  and slightly higher for 1n = .

Moving to higher values of n, ESSA model has 
presented notable improvements over Q1D DSD and SSA 
models, especially for 1.7n = , as can be seem in Figure 1c. 
Very good predictions could be achieved for all large and 
small radii. In this case, the critical diameter predicted by 
the ESSA is slighter smaller than the predicted by the SSA 
model [9], although the DNS curve seems to predict even 
smaller critical diameter.

Nevertheless, for 2n = , shown in Figure 1d, the ESSA 
model well predicts medium-larger radii while over-estimates 
the critical diameter when compared to the DNS [9]. In this 
case, the SSA model better predicts the critical diameter in 
comparison with the ESSA. However, the most interesting 
diameter sizes are the medium-larger ones because of its 
practical application in mining and blasting operations. 
Surprisingly, the ESSA model has achieved interesting 
results predictions for medium-larger diameters, not only 
for 2n = , but in all other scenarios.



Couceiro Júnior et al.

4/7Tecnol Metal Mater Min. 2022;19:e2237

4 Results and discussions

The potential application of the ESSA model in reliable 
rock blasting simulations is assessed by modelling the influence 
of limestone confinement on the ANFO’s detonation state in 
several blasthole diameters. The experimental unconfined 
diameter-effect curve, necessary to proper calibrate the 
reaction rate parameters, is obtained from Kirby et al. [18].

The thermodynamic characterization, which includes 
its ideal velocity of detonation, heat of explosion and the 
quadratic coefficients of the isentropic gamma (Table 1), 
were taken from Sharpe and Braithwaite [1].

The ESSA model presents an attractive reaction rate 
fitting capabilities due to its low computational cost. Since 
it is coupled with the Q1D model [1], the specific set of 
reaction rate parameters, responsible to match the predicted 

diameter-effect curve to the experimental data, can be found 
by non-linear minimization techniques. Thus, applying 
this fitting strategy to the unconfined ANFO data [18], the 
values ​​of 𝑛, 𝑚 and τ were obtained and presented in Table 2. 
Note that a pressure exponent of 1.78n =  was required to 
reproduce the experimental diameter-effect curve. There is 
always a presence of an inflexion point in diameter-effect 
curves when 1.5n ≥  [19], which is associated with the failure 
diameter of the explosive [9,15]. The modelled unconfined 
diameter-effect curve predicts a failure diameter very close 
to the experimental data. See the complete unconfined curve 
in Figure 2.

On the other hand, the reproduction of real-scale 
confined detonation experiments in laboratories are restrictive 
due to the charge sizes. Consequently, the validation of 
non-ideal detonation models usually tends to be carried out 

Table 1. Ideal thermodynamic data
Explosive CJD 0ρ Q 0γ 1γ 2γ

ANFO 4800 m/s 800 kg/m3 3822 kJ/kg 1.3333 0.36264 0.076288

Figure 1. Diameter effect curve for cylindrical-stick geometry. Solid line (ESSA), dotted lines (SSA [9]), dashed lines (Q1D DSD [9]) and 
circles (DNS [9]).
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against real production blasthole measurements, normally 
through the in-hole confined velocity of detonation. In real 
applications, the velocity of detonation can be a good indicator 
of the degree of non-ideality of a given explosive [20]. In 
this study, a set of in-hole detonation velocities were taken 
from real-scale field measurements, specifically for a 
confined ANFO detonation in limestone. The experimental 
and calculated results are shown in Table 3. The mechanical 
properties of the limestone are 2450 kg/m3 and 4120 m/s, 
as density and seismic velocity, respectively.

Once the unconfined non-ideal detonation structure 
is modelled for a given velocity of detonation (or diameter), 
the equivalent confined non-ideal detonation state can be 
calculated. The confined diameter-effect curve in limestone 
is obtained by imposing the confinement factor (Equations 11 
and 12) over the unconfined curve. The modelled confined 
velocities of detonation and their comparison with the 
experimental measurements is presented in Table  3 and 
Figure 2. In general, the overall results were good, especially 
when considering the experimental scatter of the data, 
presenting relative errors less than 3.7%.

In non-ideal explosives, the detonation shock front is 
curved due to the lateral expansion exerted by the confining 
material. In this case, the detonation driving zone – the region 
formed between the shock and sonic locus – presents a clear 
interface with the rock material. This interface is the place where 
the explosive-rock couple process takes place, being the rock 
response a function of the explosive loading along the blasthole 
wall [21]. The energy generated within the DDZ is responsible 
of auto-supporting the detonation wave. Thus, in order to better 
understand this process, predictions of the ANFO detonation 
structure in a blasthole diameter of 127 mm were carried out 
for both unconfined and confined (in limestone) cases.

Figure  3a  and  3b show the non-ideal unconfined 
and confined detonation structures of an ANFO in a charge 
diameter of 127 mm. Strong differences on the overall DDZ 
structures are evident, which can be further realized through 
the detonation properties at the sonic locus (equivalent of 
the Chapman-Jouguet state), shown in Figure 4. Firstly, as 
expected, a much more curved detonation shock front - and 
larger deflexion angles – are observed in the unconfined 

Table 2. Reaction rate parameters

Explosive m n τ

ANFO 2.19 1.78 2.82(-05)

Table 3. Experimental and modelled confined ANFO velocities of detonation in limestone
d 102 mm 105 mm 115 mm 127 mm 140 mm

Do_ex 4006 ± 21 m/s 4009 ±104 m/s 3946 m/s 4162 ± 86 m/s 4290 ± 6 m/s
Do_cal 4045 m/s 4056 m/s 4091 m/s 4128 m/s 4163 m/s

Relative error 1.0% 1.2% 3.7% -0.8% -3.0%

Figure 3. Predictions of the (a) unconfined and (b) confined (in limestone) ANFO detonations structure in a blasthole diameter of 127 mm. 
Unconfined D=2965 m/s and confined D=4128 m/s.

Figure 2. Predicted and experimental unconfined and confined velocity 
of detonation in limestone.
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detonation case. Another aspect to note is the length of the 
effective reaction zone, which is more than 2 times bigger 
in the case of the confined detonation. Additionally, the 
confinement imposed by the limestone favored to a higher 
chemical release process within the detonation driving zone, 
supporting the propagation of a higher velocity of detonation, 
around 39% higher than the unconfined case.

The confinement effect contributes to burn around 
84.7% of the explosive within the axial reaction zone while 
only 57% is reacted in the case of unconfined detonation 
(Table 4). Indeed, for a given charge diameter, the ANFO 
burns more rapidly in the confined detonation cases than in 
the unconfined ones. This burning release process can be 
further observed on the axial pressure and reaction progress 
profiles presented in the Figure 4.

5 Conclusions

The Ellipsoidal Shock Shape Approach (ESSA) for 
modelling two-dimensional steady non-ideal detonation was 

presented. The proposed model can describe the complete 
unconfined diameter-effect curve of the explosive once the 
reaction rate parameters are fitted to a set of experimental 
data. The results obtained for the ANFO were excellent, 
including the prediction of its failure diameter. When coupled 
with the confinement properties, the ESSA model can readily 
represent the expected confined detonation state of the 
explosive. Experimental in-hole detonation velocities were 
used to check the model response to the confined detonation 
cases. The results showed a good agreement to the different 
blasthole diameters, even considering the scatter of the 
experimental data. Both confined and unconfined detonation 
structures, alongside their correspondent axial pressure and 
reaction progress profiles, were studied in order to better 
understand the macro-interaction between the explosive and 
the rock material. Thus, the overall performance, aligned 
with its simplicity, suggests the ESSA model as a reliable 
source of explosive’s energy information for a more realistic 
rock blasting simulation.

Figure 4. Prediction of the axial pressure and reaction progress profiles in a blasthole diameter of 127 mm, for (a) unconfined and (b) confined 
(in limestone) ANFO detonations. Unconfined D=2965 m/s and confined D=4128 m/s.

Table 4. Confined detonation results (ANFO)

d Type D P λ n

127 mm Unconfined 2965 m/s 1.82 GPa 0.570 -15.4 mm
127 mm Confined 4128 m/s 3.58 GPa 0.847 -37.4 mm
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