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Abstract

Quality engineering is a fundamental aspect of production systems that require minimal variability. However, the 
large number of variables analyzed in industrial processes and the correlation between them requires a more robust technique 
such as Principal Component Analysis (PCA) for process monitoring. The aim of this work was to develop a fault detection 
system, using the R programming language, based on PCA in order to improve the quality of products in a milling circuit 
and facilitate decision-making. The developed algorithm was validated using the Benchmark Tenessee case study, whose 
maximum deviations were less than 5%. Applying this algorithm to a real case study made it possible to detect a pulp box 
overflow fault, with very low T2 (0.012) and Q (0.026) values for the non-detection rate (TND).
Keywords: Grinding circuit; Multivariate statistic; Process control; Principal Component Analysis.

1 Introduction

Quality has been a crucial factor for the processing 
industry around the world over the decades. Given the 
competition, globalization, and technological aspects, to 
name a few, its role has increased exponentially in recent 
times. More specifically, quality engineering is the set of 
operational, managerial, and engineering activities that 
a company uses to ensure the quality characteristics of a 
product, with minimal variability. As variability can only 
be described in statistical terms, statistical methods play a 
central role in quality control, which is based on specification 
limits. In this sense, Statistical Process Control (SPC) 
emerged as a powerful set of problem-solving tools in the 
last century [1,2].

The control chart is one of the main SPC techniques. 
The most representative is the Shewhart control chart, which 
has been widely used to monitor quality characteristics in 
manufacturing. System monitoring tasks have three main 
steps. Namely, the detection of an undesired condition, 
called fault, diagnosis of this condition, and interventions 
to recover the process [3]. A disadvantage of the Shewhart 
control chart is its univariate nature. Thus, the correlation 
between the variables, an inherent characteristic of continuous 
industrial processes, is not considered. Coupled with the high 
number of variables measured mostly nowadays, principal 
component analysis (PCA) is therefore commonly applied 
for process monitoring [4-6].

Principal component analysis (PCA) belongs to the 
area of multivariate statistics, whose principle is to reduce 
the dimensionality of a problem by keeping most of its 
variance [7]. The greater the correlation between the variables, 
the greater the dimensionality reduction. Thus, it can deal 
with highly correlated multivariate systems, as is the case 
in the process industry. This characteristic explains the large 
number of applications in process monitoring. PCA can be 
seen as a multivariate extension of the univariate Shewhart 
control chart. The following works are some examples in 
the mining sector [8-13].

The objective of this paper was to develop a PCA-based 
fault detection system aimed at improving quality and also 
decision-support tool in a grinding circuit from Brazilian 
iron ore mine. This paper was presented as a case studies: 
the first one was used to develop the script and its validation, 
while the second one presents the application of the script 
validated and developed on the first case.

2 Principal component analysis (PCA)

A brief description of the principal component 
analysis (PCA) formulation is described below using a 
matrix representation. More information can be found in 
fundamental literature [2,7].
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Two metrics are commonly employed in PCA-based 
process monitoring applications. The first is given by the T2 
statistic, shown in Equation 4. This metric uses the scores (si, 
i=1,2, …, k) of only the first k components, thus describing 
the main characteristics of the process under analysis. The T2 
value is calculated for each sample so that it can be tracked 
over time in a monitoring task. Relatively larger deviations 
are an indication that the process is moving away from 
normal operation.
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The second metric is given by the Q statistic. Its 
calculation is analogous but using the remaining (p–k) 
components, as shown in Equation 5. The Q value is also 
calculated for each sample and, in addition to the information 
provided by T2, relatively larger changes over time usually 
mean changes in the spatial noise correlation structure, as 
mentioned earlier.
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As the T2 and Q statistics are multivariate in nature, 
they lead to multivariate process monitoring. For the definition 
of its multivariate control charts, control limits must be 
established. These limits can be calculated using the well-
known significance level (α), but the usual non-normality 
of process data can be a burden for this. A commonly used 
workaround is the percentile approach. For example, given 
a false alarm rate (FAR) of 1% [3], upper control limits are 
given by the 99th percentile using normal data. The lower 
control limits for both statistics are zero.

3 Case studies

3.1 Tennessee benchmark problem: validation of script

The Tennessee Benchmark has often been used in 
process engineering to develop fault detection systems. In 
this work, the Tennessee Benchmark was used to validate the 
algorithm in R related to the calculations used in the PCA 
and compared to the results presented in the literature by [3].

This Benchmark Tennessee case study is based on a 
real industrial process, the aim of which is to obtain two liquid 
products from four gaseous reactants. The process takes place 
through a set of four irreversible and exothermic chemical 
reactions that have an inert component and a by-product.

The Benchmark Tennessee case study system consists 
of five main pieces of equipment: a reactor, a condenser, a 
vapor-liquid separator, a recycle compressor and a stripper 
column. The system is structured in such a way as to allow 
the acquisition of 53 measurements which include process 
variables, manipulated variables and laboratory parameters, 
and are collected at a sampling interval of three minutes.

Consider a matrix X[n,p] with n records and p process 
variables. The records are related to the values assumed by 
the variables in the sampling interval and the variables can 
be, for example, flow, pressure, temperature, concentration, 
etc. One of the first actions for this database is to normalize 
each variable to zero mean and unit variance. This is important 
because the magnitudes of the variables can span a considerable 
range. Thus, the normalized matrix Z[n,p] is used instead of 
the matrix X[n,p] containing the actual values of the variables. 
In this normalization process, the correlation matrix R[n,p] of 
Z is obtained. Using the characteristic polynomial equation, 
the correlation matrix can be described by a set of pairs of 
eigenvalues and pairs of eigenvectors. The eigenvalues are 
given by the vector Λ[p,1] and the eigenvectors by the matrix 
W[p,p], where the eigenvectors are organized in columns 
(w[p,1]). Both are arranged in descending order according 
to the values in Λ.

From a practical point of view, the eigenvectors 
are the axes of the new coordinate system, derived from 
the orthogonal rotation of the original coordinate system 
defined by X. They are called principal components (CPs). 
They are linear combinations of the original variables but 
not correlated with each other.

The corresponding eigenvalues (λi, i=1,2,…,p) 
are the variances of each of the principal components. 
The original total variance is also preserved in the new 
coordinate system, as shown by Equation 1, where σi

2 is the 
variance of the ith-variable. The eigenvectors are defined in 
such a way as to maximize the original variance explained 
by them. In other words, the first principal component 
explains the maximum possible variance, the second, 
the remaining possible variation, and so on. Thus, few 
components can describe the main characteristics of the 
process under analysis.

This feature opens an opportunity to reduce its 
dimension by using only a few components (k) instead of 
the total number of original variables (p), with k ≪ p. The 
number of components to retain in the model is generally 
defined by setting the desired amount of variation to be 
explained. The remaining components are often associated 
with process noise.
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The sample points in the new coordinate system 
are called scores (S[n,p]). They are calculated according to 
Equation 2. It is noteworthy that the spatial arrangement of 
the original data is preserved in this new coordinate system. 
The original normalized values (Z[n,p]) can be recovered as 
shown in Equation 3.
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The Tennessee Benchmark has 22 data sets, of which 
21 are data from faulty operations and 1 data set corresponds 
to the normal operating condition. For practical purposes, 
Gaussian noise is introduced in all measurements. More 
detailed information on the Tennessee Benchmark can be 
found in [14].

3.2 Grinding circuit: application of script

The data set used in this case study refers to the 
operation of a grinding circuit in an iron ore beneficiation 
plant of a mining company in Brazil. Ore beneficiation 
consists of a set of operations to reduce particle size and 
concentrate the mineral particles of interest. The concentration 
operations remove the (unwanted) gangue minerals from 
the ores, concentrating the minerals of interest. Figure 1 
shows a closed grinding circuit with a mill and hydrocyclone 
classifier typical of grinding operations, as well as the main 
system variables.

The grinding system consists of a ball mill (power: 
2,486 hp; dimensions: 6.1 m x 4.4 m, and speed: 15.18 rpm), 
a slurry box and a classification system made up of high-
frequency screens (dimensions: 1.22 m x 3.04 m; polyurethane 
screen opening: 0.150 mm; installed power: 2.5 hp per set of 
5 screens). In the system under study, particle size distribution 
and solids concentration are the two quality parameters, and 
both affect the feed to the grinding circuit.

Table 1 contains the set of eight operational variables 
considered in the case study, which were selected on the basis of 
information from the literature and the empirical knowledge of 
the team at the mineral processing plant. The variables Y1-MV 
and Y2-MV are writing variables, and the others are process 

and disturbance variables. The variables X1-PV and X2-PV 
are the ones of greatest interest, as they are indicators of the 
quality of the ore processing process. The data set corresponds 
to 19 days of continuous circuit operation, sampled every 5 
seconds, totalling 259189 records per variable.

4 Metodology

Figure 2 shows the three main steps of the methodology. 
Each one is described below. This methodology was applied 
to both case studies. After its validation with the Tennessee 
benchmark problem (case study 1), it was applied to the 
grinding circuit (case study 2).

•	 Model identification: This step is responsible for 
obtaining the PCA model, characteristic of normal 
operating conditions. A parameter to be defined in 
this phase is the number ( k ) of principal components 
to be retained in the model.

Figure 1. Grinding circuit flowsheet of the case study.

Table 1. Variables of the grinding circuit of the case study

Variable Code Unit
Circuit feedrate Y1-MV t/h
Water flow rate added to slurry box Y2-MV m3/h
Slurry solids concentration X1-PV %
Particle size at 100# X2-PV #
Slurry box level X3-DV %
Slurry density X4-DV t/m3

Circulating load X5-DV %
Mill efficiency X6-DV %
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•	 Control limits definition: This step calculates an upper 
control limit (UCL) for each monitoring statistic, 
namely, T2 and Q. For this, it is necessary to define 
the desired false alarm rate (FAR), which was equal 
to 1% in this work as adopted by Russell et al. [3]. 
Considering the usual non-normality in process data, 
the use of the well-known significance level (α) can 
lead to unsatisfactory results. A common solution in 
this case is the percentile approach; in this case, the 
99th percentile. This calculation is based on the T2 and 
Q  values calculated from the previous PCA model 
using fault-free data. Thus, at this point, there is a 
multivariate control chart for each monitoring statistic.

•	 Fault detection: The fault data was then fed into the 
previous PCA model and the resulting T2 and Q values 
were plotted against the respective control charts. For 
evaluation purposes, Missed Detection Rate (MDR; 
in %) was used as a performance metric. The values 
of T2 and Q are expected to exceed the upper control 
limit after the fault occurs. Detection is then considered 
missed when it does not occur. The MDR calculation 
is shown in Equation 6, where the numerator refers 
to the number of records below the control limit 
after the fault occurs, and the denominator is given 
by the total number of records in the time interval 
under fault. The closer the MDR to zero, the better.

Number of missed registerMDR  
Total number or registers under fault

=  	 (6)

5 Results and discussions

5.1 Tennessee benchmarck problem: 
validation of script

Table 2 shows the MDR results obtained from the 
PCA model for the T2 and Q monitoring statistics. They also 
show the differences (MDRThis work – MDR[3]) in relation to 
the work by [3]. Most of the difference values are below 1%, 

as is desirable. The greater differences, in absolute terms, 
are equal to 4.1 (fault 21) and 2.8% (fault 5) for T2 and Q, 
respectively, that is, below 5%. These results satisfactorily 
validate the PCA scripts written using the R programming 
environment for this work. This type of result is important 
before dealing with real-world problems, as is the second 
case study of this work.

Furthermore, it can be noted that for some cases both 
metrics consistently indicate fault (MDR values close to zero) 
(for example, fault 1), while for others only one metric is 
successful (for example, fault 4). In other cases, neither of 
the two metrics can identify the fault (MDR values close to 
one) (for example, fault 3). These results illustrate the greater 
difficulty in detecting some faults and that no system can 
recognize all types of faults in a process. The fault detection 
task is still a challenge for the process industry.

5.2 Grinding circuit: application of script

After validating the PCA scripts with the previous 
benchmark case study, the methodology was applied to a real 
case study of the grinding circuit of an iron ore beneficiation 
plant of a mining company in Brazil.

Table 3 shows the result of the PCA modelling for 
the grinding circuit using normal operating data. As the total 
number of original variables is relatively low, a numerical 
analysis of their weights (loads) in the model can be done 
more directly. It can be observed that the variables Y2-MV, 
X1-PV, X3-DV, X4-DV, and X5-DV have considerable weights 
(highlighted in bold) in the first principal component (CP1), 
which explain 36.3% of the variance of the process data. 
For the second principal component (CP2), which accounts 
for 22.2% of the explained variance, this occurs for Y1-MV 
and X7-DV. In the third principal component (CP3), which 
explains 12.0% of the original variance, X2-PV and Y2-MV 
again have relatively higher weights.

Thus, in a way, all eight original variables (Table 1) are 
covered by only three principal components (k = 3), which 
can explain 70.5% of the variance of the original data. This 
value is quite satisfactory in industrial engineering. Thus, 
the final PCA model to be used as a fault detection system 

Figure 2. Methodology steps.
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in the grinding circuit is composed of PC1, PC2 and PC3.
Table  3 shows the MDR results obtained from the PCA 
model for the T2 and Q monitoring.

Next, given the 1% false alarm rate (FAR) as before, 
the upper control limits (UCL) for the T2 and Q statistics 
were calculated using the 99th percentile procedure. They 
are about 20 and 200, respectively.

Then, a fault detected on November 7, 2015 by the 
plant team responsible for operating the grinding circuit of 
the case study was selected to be used in this work. It started 
around 6:50 am and ended around 8:30 am. This event 
referred to an overflow in the pump box when analyzing 
the rapid increase of the tank level without increasing the 
pump frequency (Figure 3).

Table 2. Fault detection results (comparison with Russell et al. [3])

Fault

2T Q

MDR  
This work

MDR 
(Russell et al. [3])

Difference 
(%)

MDR  
This work

MDR 
(Russell et al. [3])

Difference 
(%)

1 0.009 0.008 0.1% 0.004 0.003 0.1%

2 0.021 0.020 0.1% 0.015 0.014 0.1%

3 0.999 0.998 0.1% 0.999 0.991 0.8%

4 0.963 0.956 0.7% 0.036 0.038 -0.2%

5 0.746 0.775 -2.9% 0.774 0.746 2.8%

6 0.013 0.011 0.2% 0.001 0 0.1%

7 0.079 0.085 -0.6% 0.001 0 0.1%

8 0.034 0.034 0.0% 0.026 0.024 0.2%

9 0.999 0.994 0.5% 0.980 0.981 -0.1%

10 0.644 0.666 -2.2% 0.649 0.659 -1.0%

11 0.788 0.794 -0.7% 0.344 0.356 -1.2%

12 0.023 0.029 -0.7% 0.026 0.025 0.1%

13 0.061 0.060 0.1% 0.046 0.045 0.1%

14 0.121 0.158 -3.7% 0.001 0 0.1%

15 0.980 0.988 -0.8% 0.971 0.973 -0.2%

16 0.829 0.834 -0.5% 0.744 0.755 -1.1%

17 0.254 0.259 -0.5% 0.100 0.108 -0.8%

18 0.114 0.113 0.1% 0.101 0.101 0.0%

19 0.999 0.996 0.3% 0.858 0.873 -1.6%

20 0.703 0.701 0.2% 0.546 0.550 -0.4%

21 0.695 0.736 -4.1% 0.576 0.570 0.6%

Table 3. PCA model for the second case study

Variable CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8

Y1-MV 0.0514 0.9035 -0.0587 -0.1466 0.0588 0.0602 0.3861 0.0016

Y2-MV -0.5603 0.0434 0.6445 -0.3700 -0.0354 -0.3610 0.0174 -0.0003

X1-PV -0,8748 0.2049 -0.2686 0.2874 -0.1138 -0.1358 -0.0164 -0.0799

X2-PV 0.2740 0.2319 0.5589 0.7317 -0.1418 0.0510 0.0246 0.0035

X3-DV -0.6199 -0.1229 0.1482 0.1473 0.7323 0.1427 0.0188 0.0019

X4-DV -0.8999 0.1331 -0.2723 0.2391 -0.1456 -0.1145 -0.0094 0.0819

X5-DV -0.7410 -0.1024 0.2421 -0.2245 -0.3147 0.4820 0.0024 -0.0049

X6-DV 0.0679 0.9037 0.0329 -0.1292 0.0905 0.0658 -0.3853 0.0033

Variance (%) 36.3% 22.2% 12.0% 11.5% 8.8% 5.3% 3.7% 0.2%

Cumulative variance (%) 36.3% 58.5% 70.5% 82.0% 90.8% 96.1% 99.8% 100.0%
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The multivariate control charts for the T2 and Q 
monitoring statistics corresponding to this fault period 
are shown in Figure 4. The MDR values for them were 
respectively equal to 0.012 and 0.026 . These significantly 
low values are an indication that the fault was detected 
within a reasonable amount of time. The sooner a fault is 
detected, the greater the chance of recovering the process 
and mitigating potential losses. Furthermore, it can be seen 
that there were no false alarms, which is crucial for the 
reliability of a fault detection system.

6 Conclusions

The algorithm developed for fault determination 
proved to be effective during validation with the Benchmark 
Tennessee case study, showing fault detection deviations of 

less than 5% in relation to literature data. The application of 
this algorithm to industrial data from the iron ore grinding 
circuit showed that only three principal components are 
sufficient to explain approximately 70% of the variance in 
the data and, as a result, the size of the analysis was reduced 
from 8 to 3. Thus, the eight original variables analysed are 
covered by the three principal components. The evaluation 
of the T2 and Q statistics for a known case of failure reported 
by operators made it possible to identify the start and end 
of the failure by extrapolating the upper limits set for the 
statistics.
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Figure 3. Pump box level and pump frequency data.

Figure 4. Multivariate control charts for (A) T2 and (B) Q statistics, given the pump box fault in the grinding circuit.
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