# PROCESSAMENTO DO SUPERCONDUTOR CERÂMICO BI-2212 POR FUSÃO PARCIAL

Alexander Polasek 1

Carla Vital de Sena <sup>2</sup>

Márcio Antônio Sens 3

Fernando Cosme Rizzo Assunção <sup>4</sup>

Eduardo Torres Serra 5

#### Resumo

O óxido Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+x</sub> (Bi-2212) é um dos principais supercondutores cerâmicos de alta temperatura para o desenvolvimento de aplicações, seja na forma de fitas ou na forma maciça. No presente trabalho, investiga-se o processamento de blocos maciços de Bi-2212 pelo método de fusão parcial. O pó precursor é prensado na forma de blocos, que são parcialmente fundidos, seguindo-se um resfriamento lento e recozimento isotérmico. Foram empregados precursores com diferentes composições e a adição de pó de prata também foi estudada. Foram realizadas análises por DRX, MEV/EDS e DTA. A corrente crítica dos blocos (I<sub>c</sub>) foi medida em corrente contínua, à temperatura do nitrogênio líquido (77 K). A fusão parcial produz a decomposição da fase Bi-2212 em líquido e fases sólidas. O resfriamento lento tende a promover a densificação do material e o crescimento de longos grãos texturizados de Bi-2212, que favorece o transporte de corrente elétrica. Contudo, ocorre também a precipitação de fases secundárias, que podem dificultar o transporte de corrente. Foram obtidas amostras com valores de I<sub>2</sub> acima de 100 A.

Palavras-chave: Supercondutores; Fusão parcial.

## PARTIAL MELTING PROCESS OF BI-2212 CERAMIC SUPERCONDUCTOR

#### **Abstract**

The  $Bi_2Sr_2CaCu_2O_{8+x}$  (Bi-2212) oxide is one of the main high-temperature superconductors for applications development. The present work reports our investigations on the partial melt processing of bulk Bi-2212. Precursors with different nominal compositions are mixed with silver powder, since this metal lowers Bi-2212 melting temperature and is believed to enhance its properties. The precursors are then uniaxially pressed into silver molds. Samples are analyzed by means of DTA, XRD and SEM/EDS. The critical current ( $I_c$ ) of the processed blocks is measured by using the four-point method, at the liquid nitrogen temperature (77 K). By partial melting, the Bi-2212 phase decomposes into liquid and solid phases. Slow cooling tends to promote bulk densification and texturization of Bi-2212 grains, favoring thus the current transport. However, precipitation of secondary phases may decrease the current transport capacity of the material. Samples with critical currents above 100 A have been obtained.

Key words: Superconductors; Partial melting.

# I INTRODUÇÃO

O óxido Bi<sub>2</sub>Sr<sub>2</sub>CaCu2O<sub>8+x</sub> (Bi-2212) é um dos supercondutores de alta temperatura mais promissores para aplicações. Entre as características que possibilitam o seu emprego em diversos segmentos do setor elétrico destacam-se:<sup>(1)</sup> um largo campo de estabilidade química, em função da temperatura e composição; ausência de elementos altamente tóxicos; temperatura crítica de transição

para o estado supercondutor ( $T_c$  < 96 K) superior à temperatura do nitrogênio líquido (77 K).

Este material é um dos mais apropriados para a construção de limitadores de corrente de curto-circuito supercondutores (LCSC). O LCSC pode limitar picos de corrente em redes de média e de alta tensão, utilizando a transição do estado supercondutor para o estado resistivo. A atuação

<sup>&</sup>lt;sup>1</sup>D.Sc., Pesquisador, CEPEL – Centro de Pesquisas de Energia Elétrica - DTE, Avenida Horácio Macedo, 354 - Cidade Universitária, 21941-911, Rio de Janeiro, RJ. E-mail: polasek@cepel.br

<sup>&</sup>lt;sup>2</sup>Estagiária de graduação, UFRJ- Departamento de Engenharia Elétrica, Bloco H, Sala 227, Cidade Universitária, 21941-909 Rio de Janeiro, RJ. E-mail: cvital@cepel.br

<sup>&</sup>lt;sup>3</sup>M.C., Pesquisador, CEPEL - DVLF, Avenida Horácio Macedo, 354 - Cidade Universitária, 21941-911 Rio de Janeiro, RJ. E-mail: sens@cepel.br <sup>4</sup>PhD, Professor Titular, PUC-Rio - Departamento de Ciência dos Materiais e Metalurgia, Rua Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ. E-mail: rizzo@dcmm.puc-rio.br

<sup>&</sup>lt;sup>5</sup>D.Sc., Pesquisador Consultor, CEPEL - DP, Avenida Horácio Macedo, 354 - Cidade Universitária, 21941-911 Rio de Janeiro, RJ. E-mail: etserra@cepel.br

é muito rápida, possibilitando a limitação da corrente anormal em milissegundos. (2) Quando a corrente é tal que ultrapassa o valor de corrente crítica do supercondutor (I<sub>c</sub>), ocorre a transição para o estado normal.

A I<sub>c</sub> depende fortemente da microestrutura do material, aumentando com o grau de alinhamento preferencial dos grãos supercondutores e com a massa específica do material cerâmico. A fase Bi-2212 pode ser produzida a partir da fusão do material precursor, o que favorece o aumento da massa específica, bem como o alinhamento dos grãos, fator necessário para o transporte de altas correntes.<sup>(3)</sup>

No presente trabalho, investiga-se o processamento de Bi-2212 na forma maciça, pelo método de fusão parcial, que consiste na fusão peritética da fase 2212 contida no precursor, seguida da recristalização e crescimento da mesma por resfriamento lento e tratamento isotérmico subseqüente. Foram alcançados valores de  $I_c$  superiores a 100 A e de densidade de corrente crítica ( $J_c$ ) de até 800 A/cm².

#### **2 PROCEDIMENTO EXPERIMENTAL**

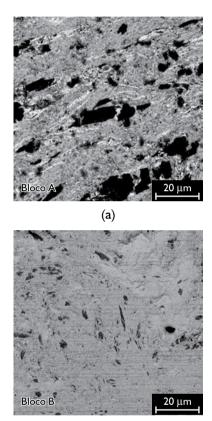
Foram empregados pós precursores comerciais com as seguintes composições nominais: Bi,Sr,CaCu,O<sub>8+x</sub> (Alfa Aesar, 1996) e  $Bi_{2.16}Sr_{1.97}Ca_{0.88}Cu_{2.00}O_{8+x}$  (NEXANS Superconductors, 2005). Também foi utilizado um pó precursor de composição  $Bi_{2,2}Sr_{2,05}Ca_{0,95}Cu_{2,0}O_{8+x}$ , sintetizado a partir de um mistura de óxidos e carbonatos, por reação no estado sólido a 750°C-860°C/156 h, com moagens intermediárias em gral de ágata. No presente trabalho, este precursor é designado como "CEPEL". Os precursores, com ou sem adição de pó de prata (Alfa Aesar 99,9%), foram prensados uniaxialmente em moldes de prata (Alfa Aesar 99,9%) com as seguintes dimensões: comprimento = 50 mm, largura = 5 mm, altura = 5 mm. Este metal reduz a temperatura de início da fusão peritética  $(T_{solidus})$  e facilita a formação da fase 2212. (4,5) Os blocos assim obtidos foram tratados, nos moldes de prata, pelo método de fusão parcial, sob pO<sub>2</sub> = I atm. O processamento térmico consistiu em: I) fusão parcial do pó precursor a 890°C-910°C; II) resfriamento lento até 850°C; III) tratamento a 850°C/50 h; IV) resfriamento até 700°C, com mudança da atmosfera rica em oxigênio para uma atmosfera rica em nitrogênio (pN<sub>2</sub> = 1 atm), sendo o material posteriormente resfriado ao forno até a temperatura ambiente. Cada etapa do processamento por fusão parcial foi realizado com um controle de temperatura de  $\pm$  1°C.

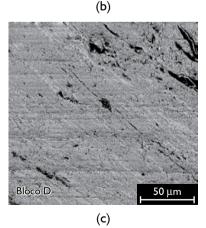
Os blocos foram nomeados de acordo com o pó precursor utilizado e com a presença ou não de pó de prata (Tabela I). A  $T_{\text{solidus}}$  de cada pó precursor foi obtida por análise térmica diferencial (DTA). As fases presentes foram identificadas por difração de raios X (DRX), com radiação  $\lambda \text{CuK}\alpha$ . As microestruturas foram analisadas por microscopia eletrônica de varredura (MEV/EDS). A  $I_c$  de cada bloco foi medida pelo método dos quatro pontos (critério de  $I_\mu \text{V/cm}$ ), em nitrogênio líquido (77 K).

**Tabela I.** Blocos produzidos, de acordo com o pó precursor empregado, a composição nominal e a porcentagem em peso de pó de prata previamente misturada ao precursor.

| •    |              |                                                                    |                               |
|------|--------------|--------------------------------------------------------------------|-------------------------------|
| Bloc | co Precursor | Composição nominal                                                 | Pó de<br>Ag<br>(% em<br>peso) |
| Α    | Alfa Aesar   | Bi <sub>2</sub> Sr <sub>2</sub> CaCu <sub>2</sub> O <sub>8+x</sub> | 0                             |
| В    | CEPEL        | $Bi_{2,2}Sr_{2,05}Ca_{0,95}Cu_{2,0}O_{8+x}$                        | 3                             |
| С    | Nexans       | $Bi_{2,16}Sr_{1,97}Ca_{0,88}Cu_{2,00}O_{8+x}$                      | 3                             |
| D    | Nexans       | $Bi_{2,16}Sr_{1,97}Ca_{0,88}Cu_{2,00}O_{8+x}$                      | 3                             |
| Ε    | Nexans       | $Bi_{2,16}Sr_{1,97}Ca_{0,88}Cu_{2,00}O_{8+x}$                      | 0                             |

# **3 RESULTADOS E DISCUSSÃO**


As análises de DRX dos pós precursores mostraram que os mesmos contém majoritariamente a fase 2212, além de  $(Ca,Sr)_2CuO_3$  (2:1),  $(Ca,Sr)_{14}Cu_{24}O_{41}$  (14:24),  $Bi_2Sr_2Cu_1O_{6+x}$  (Bi-2201) e CuO. Contudo, o precursor Alfa Aesar apresenta uma alta fração da fase 2:1. Os demais mostram balanços de fase típicos de materiais precursores de 2212.


As análises de DTA indicaram que a fusão peritética destes precursores se inicia a 890°C-900°C, em I atm de  $O_2$ , o que está de acordo com dados da literatura. (4,5) Deste modo, os blocos precursores foram processados por fusão parcial a 890°C-910°C, após o que se observou, por DRX, que a 2212 continuava a ser a principal fase, mas em frações menores do que as encontradas nos precursores, devido ao aumento das frações de 2201, 2:1, 14:24 e ao surgimento de Bi<sub>o</sub>Sr<sub>..</sub>Ca<sub>o</sub>O<sub>..</sub> Este resultado é coerente com as análises de MEV/ EDS apresentadas na Figura I, a qual mostra que a matriz consiste predominantemente de Bi-2212, além de precipitados correspondentes às demais fases citadas. A fase 2201 surge na forma de plaquetas alongadas, com tonalidade clara, imersas na matriz. A orientação destas plaquetas, especialmente na micrografia do bloco B, sugere a formação de textura da fase 2212. A 2201 possui a mesma morfologia micácea e o mesmo tipo de estrutura cristalina que a 2212, tendendo a formar textura do mesmo modo e com a mesma orientação.

As análises de EDS indicaram que a 2212 formada por fusão e recristalização apresenta, aproximadamente, as composições: Bi<sub>2.2</sub>Sr<sub>1.75</sub>Ca<sub>0.95</sub>Cu<sub>2</sub>O<sub>8+x</sub> (bloco A) e Bi<sub>1.8</sub>Sr<sub>1.4</sub>Ca<sub>0.8</sub>Cu<sub>2</sub>O<sub>8+x</sub> (blocos B, C, D e E). Em relação às respectivas composições iniciais, há um empobrecimento em Sr e Ca e, com exceção do bloco A, há também uma redução do teor de Bi. Este empobrecimento em bismuto, estrôncio e cálcio está relacionado à segregação destes

elementos para a formação de fases secundárias durante a fusão e o resfriamento lento. Já os precipitados de 2201 apresentam uma composição em torno de Bi<sub>2,0</sub>(Sr,Ca)<sub>1,5</sub>CuO<sub>x</sub>, conhecida como 2201 rica em cálcio, na qual os átomos de Ca substituem parcialmente os átomos de Sr.<sup>(5)</sup>

A formação de precipitados ocorre durante as etapas de fusão e de resfriamento lento. A fase Bi-2212 funde-se periteticamente de forma bastante complexa, em uma faixa de temperaturas, formando líquido e fases sólidas.<sup>(4,5)</sup> Estas fases sólidas são, tipicamente, as mesmas fases observadas no presente trabalho, o que está de acordo com a literatura.<sup>(1,3-5)</sup>





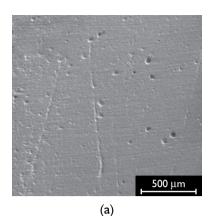
**Figura I.** Imagens de MEV, por elétrons retroespalhados, da seção transversal dos blocos A, B e D, processados por fusão parcial a 900°C, em I atm  $O_2$ : matriz - 2212; plaquetas brancas - 2201; fases secundárias escuras: 2:1, 14:24 e  $Bi_oSr_{11}Ca_sO_2$ .

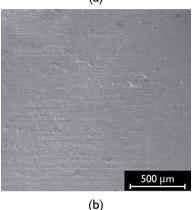
A temperatura máxima de processamento deve situar-se acima da T<sub>solidus</sub>, mas não deve ser muito elevada, para reduzir-se a volatilização de bismuto e de oxigênio, bem como para evitar a segregação excessiva de fases secundárias que atrapalhem o transporte de corrente. Por outro lado, a temperatura máxima de processamento deve ser suficientemente alta para proporcionar a formação de uma quantidade de líquido tal que permita o alinhamento adequado dos grãos e o aumento da massa específica do cerâmico.

Em trabalhos anteriores foi observado que a fusão parcial, a cerca de 900°C, leva à formação de uma microestrutura aparentemente inadequada. (6,7) Contudo, nos referidos estudos, as amostras aquecidas a T > 895°C apresentaram valores de corrente crítica maiores do que os das amostras aquecidas a temperaturas inferiores. O precursor empregado na ocasião fora obtido por reação no estado sólido, nas mesmas condições e com a mesma composição do precursor CEPEL utilizado no presente trabalho. Esta composição nominal pertence à região monofásica da 2212. (5)

A mistura prévia com pó de prata reduz a perda de oxigênio durante a fusão, facilitando a recomposição posterior da 2212.<sup>(4,7)</sup> O controle do teor de oxigênio também influencia fortemente no valor da temperatura crítica de transição (T<sub>c</sub>) desta fase e, por conseguinte, no valor de I<sub>c</sub> à temperatura do nitrogênio líquido.<sup>(6,7)</sup> Deste modo, é necessário o uso de atmosfera rica em oxigênio, com uma etapa final de tratamento em atmosfera rica em nitrogênio, para otimização do teor de oxigênio da fase 2212.

A taxa de resfriamento lento (5°C/h) e a temperatura de recozimento (850°C) empregadas no presente estudo correspondem a valores ótimos da literatura. O estágio de recozimento a 850°C tem por objetivo a continuidade do processo de formação e crescimento da Bi-2212, iniciado durante o resfriamento lento. No entanto, pode ocorrer coalescência de partículas de fases secundárias durante o recozimento, o que pode ter influído na formação de precipitados grosseiros observados, principalmente no bloco A.


A formação da fase 2201 merece uma atenção especial, pois esta pertence ao mesmo sistema da 2212 (Bi-Sr-Ca-Cu-O), sendo também supercondutora, mas a temperaturas bem mais baixas (T<sub>c</sub> = 8 K-20 K). Portanto, a formação desta fase também é prejudicial ao transporte de corrente à temperatura do nitrogênio líquido (77 K). Contudo, a fase 2201 cristaliza-se diretamente a partir da fase líquida, ao contrário da 2212, que se forma periteticamente.<sup>(5)</sup> Deste modo, a 2201 tende a formar-se mais rapidamente

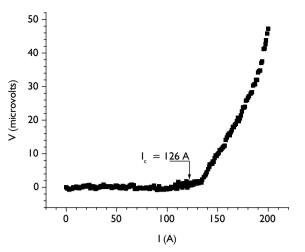

do que a 2212, sendo este um dos motivos pelo qual emprega-se uma taxa de resfriamento extremamente lenta, de modo a permitir a recristalização de altas frações de 2212. As análises por DRX e por MEV/EDS mostraram frações significativas de 2201, ainda que não muito elevadas, mas que poderiam ser minimizadas pela otimização do processo.

É importante observar que a presença de fases secundárias é necessária para o ancoramento de vórtices magnéticos. Ainda que, no estado supercondutor, haja expulsão do campo magnético (efeito Meissner), os supercondutores de alta temperatura crítica são supercondutores do tipo II, nos quais há a presença de um estado misto, em que vórtices magnéticos coexistem com o estado supercondutor. A movimentação destes vórtices leva à dissipação de energia, sendo, portanto, necessário o ancoramento dos mesmos em fases secundárias e em defeitos. Este ancoramento de vórtices é essencial para o desempenho do supercondutor. Contudo, a fração e o tamanho das fases secundárias devem ser otimizados, pois um excesso de precipitados, principalmente os mais grosseiros, atrapalha o transporte de corrente.

A massa específica do material obtido também é fundamental para o transporte de corrente. A fusão parcial deve ser tal que promova a formação de líquido suficiente para densificar o material. A Figura 2 sugere que o bloco D ficou mais denso que o bloco C (ambos os blocos foram processados a partir do mesmo precursor). No bloco C, processado a 895°C, possivelmente não houve formação de líquido em teor suficiente para tornar o material denso, o que explicaria a presença dos poros observados na Figura 2. Por outro lado, no bloco D, processado a 900°C, a análise por MEV sugere menor porosidade, provavelmente devido a uma fração maior de líquido, o que é coerente com as análises de DTA e com a inspeção visual de ambos os blocos. Estes indícios referentes à massa específica dos blocos são coerentes com os valores de I alcançados pelos mesmos, tendo o bloco C apresentado  $I_c = 0$  A, enquanto que o bloco D alcançou I = 126 A, como pode ser observado na Figura 3. Esta comparação também evidencia que a microestrutura e o desempenho do material são muito sensíveis a pequenas variações da temperatura máxima de processamento. Quanto aos blocos A, B e E, suas micrografías por elétrons secundários são similares à do bloco D, sugerindo que estes blocos também apresentaram porosidades inferiores à do bloco C. Portanto, apenas o bloco processado a T = 895°C mostrou indícios de porosidade, enquanto que os demais, processados a T = 900°C-910°C ficaram aparentemente mais densos, o que pode ser atribuído a maiores frações de fase líquida. A inspeção visual de todos os blocos estudados no presente trabalho também sugere que a fusão foi mais efetiva a temperaturas maiores ou iguais a 900°C.

A Tabela 2 apresenta os valores de  $I_c$  e de  $J_c$  ( $I_c$  / área da seção transversal) dos blocos estudados no presente trabalho. Os resultados obtidos não são suficientes para mostrar o efeito da presença de pó de prata. Entretanto, como já mencionado anteriormente, outros trabalhos indicam que a mistura com pó de prata é benéfica. (4,6,7) Quanto à influência do precursor empregado, os melhores resultados foram obtidos com os blocos D e E, produzidos com o precursor NEXANS. Como anteriormente descrito, o resultado obtido com o bloco C, produzido a partir do mesmo precursor, foi atribuído à temperatura máxima de processamento. No caso do bloco A, o precursor






**Figura 2.** Imagens de MEV, por elétrons secundários, da seção transversal dos blocos C e D, processados por fusão parcial a 895°C e 900°C, respectivamente, em I atm O<sub>2</sub>.

**Tabela 2.** Corrente crítica ( $I_z$ ) e massa específica de corrente crítica ( $J_z$ ), à temperatura do nitrogênio líquido (77 K), de cada bloco produzido no presente trabalho.

| ٧.    |                            |                                      |                    |                           |
|-------|----------------------------|--------------------------------------|--------------------|---------------------------|
| Bloco | Pó de Ag<br>(% em<br>peso) | T <sub>máxima</sub> de processamento | I <sub>c</sub> (A) | J <sub>c</sub><br>(A/cm²) |
| Α     | 0                          | 900                                  | 0                  | 0                         |
| В     | 3                          | 900                                  | 29                 | 180                       |
| С     | 3                          | 895                                  | 0                  | 0                         |
| D     | 3                          | 900                                  | 126                | 800                       |
| E     | 0                          | 910                                  | > 100              | > 650                     |

apresentou uma fração elevada da fase 2:1, o que deve estar relacionado à alta fração de precipitados grosseiros e à corrente crítica nula obtidas após o processamento deste bloco. O bloco B mostrou um resultado intermediário. Como este bloco foi processado sob as mesmas condições que o bloco D e tem uma composição nominal relativamente próxima à deste último, os resultados obtidos sugerem que o precursor NEXANS (bloco D) é superior ao precursor obtido por reação no estado sólido (bloco A). Fitas supercondutoras com alto desempenho já foram produzidas a partir do precursor NEXANS.<sup>(8)</sup> Por outro lado, valores de I<sub>c</sub> e de J<sub>c</sub> superiores aos alcançados no bloco B já foram obtidos a partir de precursores com a mesma



**Figura 3.** Curva V x I do bloco D, obtida pelo método dos quatro pontos. De acordo com o critério de I  $\mu$ V/cm, I $_c$  = 126 A, à temperatura do nitrogênio líquido (77 K).

composição nominal e sintetizados de modo similar ao precursor empregado neste bloco. (6,7) Isto leva a crer que o processamento do bloco B ainda poderia ser otimizado, sendo necessária a produção de novas amostras a partir do mesmo precursor, mas variando-se os parâmetros de processamento, para uma comparação mais conclusiva entre os diferentes precursores empregados.

O valor de  $J_c$  alcançado pelo bloco D (800 A/cm²) é razoável, em termos de amostras de 2212 na forma de bulk. Contudo, valores maiores podem ser alcançados pela da otimização do processamento por fusão parcial.

### 4 CONCLUSÃO

No presente trabalho, investiga-se o processamento de Bi-2212, na forma macica, pelo método de fusão parcial. Este método consiste na fusão peritética da fase Bi-2212 contida no precursor, seguida da recristalização e crescimento da mesma por resfriamento lento e tratamento isotérmico subsegüente. Os resultados indicam que as condições de processamento devem ser otimizadas para produzir-se blocos de 2212 com altos valores de corrente crítica. O pó precursor utilizado e a temperatura máxima de processamento, bem como o controle do teor de oxigênio da fase 2212 recristalizada, são críticos para os resultados obtidos. A otimização destes fatores é essencial para a obtenção de 2212 na forma maciça com altos valores de corrente crítica de transição.

#### **Agradecimentos**

Os autores agradecem ao Prof. Dr. Antônio Jefferson da Silva Machado, do Departamento de Engenharia de Materiais da Escola de Engenharia de Lorena / EEL-USP, por parte das medições de corrente crítica de transição. Agradecemos também ao CNPq, projeto CT-ENERG 401219/2003-8, e à ELETROBRÁS.

#### REFERÊNCIAS

- I LANG, Th.; BUHL, D.; AL-WAKEEL, S.; SCHNEIDER, D.; GAUCLER, L.J. Phase assemblage and morphology during the partial melt processing of Bi-2212 thick films. **Physica C**, v. 281, n. 4, p. 283-92, Aug. 1997.
- 2 UEDA, H.; ISHIYAMA, A.; KADO, H.; ICHIKAWA, M. Thermal and magnetic characteristics of bulk superconductor and performance analysis of magnetic shielding type of superconducting fault current limiter. **IEEE Transactions on Applied Superconductivity**, v. 11, n. 1, p. 2402-5, June 2001.
- 3 LANG, TH; BUHL, D.; GAUCKLER, L.J. Influence of the maximum temperature during partial melt-processing of Bi-2212 thick films on microstructure and Jc. **Physica C**, v. 294, n. 1, p. 7-16, Jan. 1998.
- 4 LANG, TH.; BUHL, D; GAUCKLER, L.J. Melting of Bi-2212 under controlled oxygen partial pressures with silver. **Physica C**, v. 275, n. 3, p. 284-92, Feb. 1997.
- 5 MAJEWSKI, P. Phase diagram studies in the system Bi-Pb-Sr-Ca-Cu-O-Ag. **Superconductor Science and Technology**, v. 10, n. 7, p. 453-67, July 1997.
- 6 MARINKOVIC, B.; XIA, S.K.; SALÉH, L.A.; SENS, M.A.; SERRA, E.T.; AVILLEZ, R.R.; RIZZO, F.C. Development of Bulk Bi2+xSr3-yCayCu2O8+d Superconductors by Partial-Melting Route for Fault Current Limiters Application. **Materials Research**, v. 5, n. 2, p. 179-186, June 2002.
- 7 MARINKOVIC, B.A.; XIA, S.K.; SERRA, E.T.; RIZZO, F. Influence of processing parameters of partial melting process on phase assemblage, microstructure and superconducting properties of Bi-2212 bulk material. **Materials Chemistry and Physics**, v. 91, n. 2, p. 301-312, June 2005.
- 8 FLAHAUT, E.; BOURGAULT, D.; BRUZEK, C.E.; RIKEL, M.O.; HERRMANN, P.; SOUBEYROUX, J.L.; TOURNIER, R. Dynamic heat treatment of BSCCO-2212 tapes with homogeneous properties and high critical current density. **IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY**, v. 13, n. 2, p. 3034-7, June 2003.

Recebido em: 27/11/07 Aceito em: 08/04/08

Proveniente de: CONGRESSO ANUAL DA ABM, 61., 2006, Rio de Janeiro, RJ. São Paulo: ABM, 2006.