ESTUDO DO ENVELHECIMENTO APÓS DEFORMAÇÃO EM UM AÇO DUAL PHASE DE BAIXA RESISTÊNCIA MECÂNICA LAMINADO A FRIO

Fábio Dian Murari ¹ Túlio Magno Füzessy de Melo ² Berenice Mendonça Gonzalez ³

Resumo

A cinética de envelhecimento após deformação em aço *Dual Phase* laminado a frio é estudada por meio de ensaios de tração. Após a etapa de recozimento contínuo, o aço foi pré-deformado de 0,5% em tração e envelhecido no intervalo de temperatura entre 50°C e 185°C, para tempos variando entre 1 minuto e 4.915 minutos. O aço estudado apresenta dois estágios de envelhecimento, o primeiro, entre 50°C e 125°C (para tempos inferiores a 72 minutos) e o segundo entre 125°C (para tempos superiores a 72 minutos) e 185°C. As variações no valor *Bake Hardening* sugerem, para o primeiro estágio de envelhecimento, um processo controlado pelo ancoramento das deslocações na ferrita devido à formação de *clusters* e/ou carbonetos de transição, com uma energia de ativação próxima de 70 kJ/mol e obedecendo a uma lei cinética descrita pela equação de Harper com expoente do tempo igual a 0,4. No segundo estágio de envelhecimento, o fenômeno é controlado pelo revenimento da martensita. A energia de ativação correspondente a esse estágio é de cerca de 120 kJ/mol e sua cinética pode ser descrita pela mesma equação, porém com um expoente do tempo igual a 0,5. **Palavras-chave:** Aço bifásico; Envelhecimento após deformação; *Bake hardening*.

STATIC STRAIN AGING STUDY IN A COLD ROLLED DUAL PHASE STEEL OF LOW MECHANICAL RESISTANCE

Abstract

The kinetics of static strain aging in cold rolled Dual Phase steel is studied by means of tensile tests. After the continuous annealing step, the specimens were pre-strained with a tensile strain of 0.5% and then aged in the temperature range of 50° C to 185° C and time intervals ranging from I minute to 4,915 minutes. The steel studied showe two strain aging stages: the first one between 50° C and 125° C (for times shorter than 72 minutes) and the second one between 125° C (for times longer than 72 minutes) and 185° C. The changes in the Bake Hardening values suggest, for the first stage, a process controlled by the locking of the dislocations in the ferrite due to the formation of clusters and/ or transition carbides, with an activation energy close to 70 kJ/mol and following a kinetic law described by the Harper equation with a time exponent of 0.4. In the second stage, the phenomenon is controlled by tempering of martensite. The corresponding activation energy is approximately 120 kJ/mol and the kinetics of this stage can be described by the same equation, however with a time expoent of 0.5.

Key words: Dual phase steels; Static strain aging; Bake hardening.

I INTRODUÇÃO

Ao contrário dos aços *Bake Hardenable* convencionais, para os quais o fenômeno de envelhecimento após deformação é bem caracterizado e cujos efeitos estão relacionados principalmente à quantidade de átomos de carbono em solução sólida intersticial e à densidade de deslocações, nos aços *Dual Phas*e ainda não são conhecidos, de maneira satisfatória, os mecanismos fundamentais que controlam o comportamento de envelhecimento. Em função da microestrutura apresentada pelos aços *Dual Phas*e, espera-se que o mecanismo de

¹Doutor, Pesquisador, Usinas Siderúrgicas de Minas Gerais S/A – Usiminas. Av. Pedro Linhares Gomes, 5431, CEP 35160-900, Ipatinga, MG, Brasil. E-mail: fabio.murari@usiminas.com.

²Doutor, Pesquisador, Usinas Siderúrgicas de Minas Gerais S/A – Usiminas. Av. Pedro Linhares Gomes, 5431, CEP 35160-900, Ipatinga, MG, Brasil. E-mail: tulio.melo@usiminas.com.

³Doutora, Professora, Departamento de Engenharia Metalúrgica e de Materiais – UFMG. Av. Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brasil. E-mail: gonzalez@demet.ufmg.br.

envelhecimento nesses aços seja mais complexo. Além do efeito de envelhecimento após deformação que ocorre na matriz ferrítica, o revenimento do segundo constituinte, em especial o da martensita, pode influenciar de maneira crucial o comportamento mecânico dos aços *Dual Phase*. Resultados apresentados na literatura⁽¹⁻⁴⁾ sobre o envelhecimento dos aços *Dual Phase* sugerem que o aumento de resistência está associado a um ou mais dos quatro processos:

- reordenamento de Snoek-Schoeck;(5)
- formação de atmosferas de Cottrell;
- formação de clusters ou carbonetos de transição na ferrita; e
- revenimento da martensita, controlado pela segregação do carbono para as deslocações e/ou pela formação dos carbonetos ε (Fe_{2.4}C) e η (Fe₂C).

Neste estudo foram caracterizados os aspectos cinéticos do envelhecimento após deformação em um aço *Dual Phase* da classe de 450 MPa, com limite de resistência na condição de laminado a frio e recozido, visando seu controle e utilização como mecanismo de aumento de resistência nessa classe de aço.

2 MATERIAIS E MÉTODOS

O estudo foi desenvolvido a partir de lingote produzido em escala piloto, em forno de fusão a vácuo, com composição química conforme Tabela I.

Tabela I. Composição química do lingote produzido em escala piloto (% p/p)

С	Mn	Si	Р	S	AI	N
\leq 0,15	\leq 1,80	≤ 0,02	\leq 0,03	≤ 0,004	≤ 0,05	≤ 0,005

O lingote foi processado por laminação a quente primeiramente até a espessura de 35,0 mm e, em seguida, até a espessura de 8,0 mm, com resfriamento em forno mufla, visando à simulação do bobinamento à temperatura de 650°C. As chapas obtidas foram usinadas até a espessura de 3,0 mm, sendo então laminadas a frio até a espessura final de 0,7 mm. Das chapas assim produzidas, foram preparadas amostras, retiradas paralelamente à direção de laminação, com as dimensões 150 x 50 x 0,7 mm para serem utilizadas na simulação do ciclo de recozimento contínuo (Figura 1), realizada em um simulador termomecânico *Gleeble* modelo 3500.

Após o término do ciclo de recozimento contínuo, cada amostra tratada na Gleeble deu origem a três corpos-de-prova de ensaio de tração. Não foi aplicado passe de encruamento após a simulação do recozimento. Até o momento da confecção dos corpos-de-prova de tração e durante o período de espera para realização dos ensaios de caracterização mecânica e de envelhecimento, o material recozido, com cerca de 18% de segundo constituinte (martensita + bainita), foi mantido em temperatura inferior a -20°C, para que não ocorresse envelhecimento natural.

Tecnol. Metal. Mater. Miner., São Paulo, v. 6, n. 2, p. 108-112, out.-dez. 2009

Figura I. Exemplo esquemático de ciclo recozimento contínuo adotado.

2.1 Caracterização da Cinética de Envelhecimento

Após a aplicação de pré-deformação de 0,5% em tração,^(3,4) foram realizados experimentos visando a caracterização do fenômeno de envelhecimento.

Os tratamentos térmicos de envelhecimento foram realizados em temperaturas entre 50°C e 185°C, para tempos variando entre I minuto e 4.915 minutos. A escolha das faixas de tempo e temperatura está baseadas nos trabalhos encontrados na literatura sobre envelhecimento em acos Dual Phase^(1,6-8) e nos valores praticados durante a etapa de cura da pintura das carrocerias de automóveis. Os corpos-de-prova foram tratados em um banho de óleo de silicone em uma câmara equipada com controlador de temperatura e bomba de agitação mecânica, modelo W26 marca Haake. A capacidade do banho, de 20 litros, aliada à agitação mecânica, proporcionou variações de temperatura menores que ± 0,5°C, conforme foi confirmado através do registro de temperatura por meio de um termopar. Encerrados os tratamentos em banho de óleo de silicone, os corpos-de-prova foram resfriados em água a 2°C. Depois de retirados do banho de resfriamento, os corpos-de-prova foram mantidos à temperatura ambiente por cerca de 40 minutos antes da realização dos ensaios de tração. O aumento de resistência devido ao envelhecimento é avaliado por meio do valor Bake Hardening $(BH_{0.5})$, calculado como a diferença entre o limite de escoamento inferior após tratamento térmico e a tensão obtida para a prédeformação de 0,5%. O cálculo dessas tensões é feito utilizando-se as dimensões originais do corpo-de-prova. Para cada condição considerada, foram utilizados três corpos-de-prova tratados de maneira idêntica. Os ensaios de tração foram realizados em uma máquina Instron modelo 5882 equipada com extensômetro Instron de 25 mm de base de medida e pacotes de programas para aquisição e tratamento de dados (Blue Hill). Os ensaios foram feitos à temperatura ambiente e a uma taxa de deformação média igual a 10⁻³ s⁻¹.

A cinética de envelhecimento foi determinada por meio da forma generalizada da equação de Harper, (1), na qual Y é a fração envelhecida, dada por $(BH_{0.5;t})/(BH_{0.5;max})$, onde $BH_{0.5;t}$ é o valor *BH* para uma pré-deformação de 0,5% em tração após um tempo *t* de envelhecimento a uma dada temperatura e $BH_{0.5;max}$ é o valor máximo ou de saturação atingido pelo parâmetro $BH_{0.5;max}$ e o valor máximo e mereratura, k_v é a constante de velocidade de envelhecimento e *m* é expoente do tempo.

$$Y = 1 - \exp\left[-(k_{\nu}t)^{m}\right] \tag{1}$$

A constante k, na Equação I é dada por (Equação 2):

$$k_v = k_0 \exp\left(-\frac{\Delta H}{RT}\right)$$
(2)

onde k_0 é uma constante; ΔH é a energia de ativação aparente do processo; R é a constante universal dos gases (8,314 J/mol.K); e T é a temperatura absoluta.

3 RESULTADOS E DISCUSSÃO

O comportamento do aço investigado durante o envelhecimento é, em linhas gerais, caracterizado por dois estágios de aumento do valor $BH_{0.5}$ com o tempo de envelhecimento (Figura 2). Para as temperaturas de 50°C, 75°C e 100°C observa-se apenas um estágio de envelhecimento. Para a temperatura de 125°C, o valor $BH_{0.5}$ inicialmente aumenta com o tempo de envelhecimento, até 25 minutos de tratamento (ln (t) = 3,22), atinge em seguida um patamar de saturação para depois aumentar novamente em função do tempo (após 72 minutos de tratamento $- \ln (t) = 4,28$). À medida que se aumenta a temperatura, o efeito de saturação tornase mais evidente e a duração do primeiro estágio diminui. Para as temperaturas de 170°C e 185°C nota-se, praticamente, apenas o segundo estágio de envelhecimento. Conforme é apresentado, os valores de BH_{0.5: max} para o primeiro estágio de envelhecimento ficam compreendidos entre 32 MPa e 37 MPa e, entre 53 MPa e 57 MPa, para o segundo estágio.

Figura 2. Variação do parâmetro $BH_{0,5}$ com o tempo (em minutos) e a temperatura de envelhecimento.

A linearização da fração envelhecida Y a partir dos dados de variação do valor BH_{0.5}, de acordo com o procedimento descrito por Buono et al.,⁽⁹⁾ é apresentada nas Figuras 3 e 4 para o primeiro e segundo estágios de envelhecimento, respectivamente. O ajuste de uma reta aos pontos experimentais pelo método dos mínimos guadrados é dado pelas linhas contínuas, associadas a cada uma das isotermas. Os valores do expoente do tempo, m, e da constante de velocidade, k,, calculados por meio desse ajuste, são apresentados na Tabela 2. Examinando os dados apresentados nesta tabela, observa-se que o valor do expoente do tempo varia entre 0,35 e 0,39, para o primeiro estágio, e entre 0,47 e 0,54, para o segundo estágio. Observa-se, também, um aumento da constante de velocidade com a elevação da temperatura de envelhecimento, conforme esperado. Por fim, nota-se que os coeficientes de correlação são superiores a 0,95, indicando que a equação I descreve adequadamente a variação da fração transformada com o tempo.

Figura 3. Linearização da fração envelhecida determinada pela variação do valor $BH_{0,5}$ no primeiro estágio de envelhecimento. Tempo de envelhecimento em minutos.

Figura 4. Linearização da fração envelhecida determinada pela variação do valor *BH*_{0.5} no segundo estágio de envelhecimento. Tempo de envelhecimento em minutos.

Tabela 2. Expoentes do tempo e constantes de velocidade calculados a partir da variação do valor *BH0,5* com o tempo de envelhecimento para diferentes temperaturas, e coeficientes de correlação correspondentes, r^2

Primeiro estágio				Segundo estágio			
T (°C)	m	k, (s ⁻ ')	r ²	T (°C)	m	K _v (s ⁻¹)	r ²
50	0,38	2,77 x 10 ⁻⁴	0,998	125	0,51	2,54 x 10 ⁻⁵	0,974
75	0,39	I,98 x I0⁻³	0,996	140	0,50	6,96 x 10 ⁻⁵	0,988
100	0,38	10,80 x 10 ⁻³	0,997	155	0,49	4,05 x 10 ⁻⁴	0,984
125	0,36	41,72 x 10 ⁻³	0,999	170	0,47	6,21 x 10 ⁻⁴	0,989
140	0,35	52,29 x 10 ⁻³	0,999	185	0,54	2,97 x 10 ⁻³	1,000
155	0,35	153,42 x 10 ⁻³	0,953				

A energia de ativação do fenômeno controlador da cinética de envelhecimento pode ser calculada pela inclinação da reta obtida pelo ajuste de ln k_v com o inverso da temperatura. Desta forma, é obtido para o primeiro estágio de envelhecimento do aço estudado um valor de ΔH igual a 67 \pm 3 kJ/mol (Figura 5). Este resultado está de acordo com o estudo realizado por Byun, Kim e Kim,⁽⁸⁾ no qual éobtido para o primeiro estágio de envelhecimento de um aço *Dual Phase* com 0,07% de carbono, 1,59% de Mn, 0,03% de Si e 0,06% de Al, para temperaturas abaixo de 150°C, uma energia de ativação de 71,06 kJ/mol. Para o segundo estágio de 118 \pm 10 kJ/mol (Figura 6), que está de acordo com os valores relatados na literatura,^(2,7,8) para o segundo estágio de envelhecimento de aços *Dual Phase*.

Figura 5. Variação de l
n $k_{\rm v}$ em função do inverso da temperatura absoluta para
o primeiro estágio de envelhecimento.

Figura 6. Variação de l
n $k_{\rm v}$ em função do inverso da temperatura para o segundo
estágio de envelhecimento.

Tecnol. Metal. Mater. Miner., São Paulo, v. 6, n. 2, p. 108-112, out.-dez. 2009

Os resultados dos parâmetros cinéticos, *m* e ΔH , obtidos para o primeiro estágio de envelhecimento sugerem a interpretação do fenômeno controlador do processo em termos de ancoramento das deslocações na ferrita devido à formação de *clusters* e/ou carbonetos de transição, como o carboneto ε , para o qual se espera, para um processo controlado pela difusão induzida por um gradiente de concentração, uma lei cinética com $t^{1/2}$ e ΔH em torno de 70 kJ/mol.⁽¹⁰⁾ Vale ressaltar que, para um processo controlado pela difusão do carbono na ferrita, para a formação de atmosferas nas deslocações, seriam esperados valores de *m* em torno de 2/3 e de energia de ativação entre 76 kJ/mol e 90 kJ/mol.⁽¹¹⁾

Com relação ao segundo estágio de envelhecimento, o valor de energia de ativação encontrado, 118 ± 10 kl/mol, está de acordo com os resultados de energia de ativação obtidos por Waterschoot, Verbeken e De Cooman⁽¹²⁾ (123,8 kJ/mol) e Cheng et al.⁽¹³⁾ (III kl/mol - I26 kl/mol), para o estágio de precipitação de carbonetos de transição, carboneto ϵ e/ou carboneto η , durante o revenimento da martensita na faixa de temperatura entre 120°C e 200°C. Em linha com esses resultados, também foi obtida por Lement e Cohen,⁽¹⁴⁾ uma lei cinética, segundo o modelo de Harper, com o expoente do tempo igual a 0,5, para a formação do carboneto ϵ durante o revenimento da martensita, baseando-se em um modelo controlado pela difusão induzida por gradiente de concentração. Portanto, em função dos valores de expoente do tempo e de energia de ativação obtidos, pode-se associar o segundo estágio de envelhecimento do aço estudado à formação de carbonetos de transição durante o revenimento da martensita na faixa de temperatura entre 125°C e 185°C.

4 CONCLUSÕES

O comportamento aço investigado é, em linhas gerais, caracterizado por dois estágios de aumento do valor $BH_{0.5}$ com o tempo de envelhecimento. Para o primeiro estágio são obtidos valores de $BH_{0.5}$ de saturação entre 32 MPa e 37 MPa e, para o segundo estágio, valores entre 53 MPa e 57 MPa. Os resultados dos parâmetros cinéticos obtidos para o primeiro estágio, $m = 0.35 \sim 0.39$ e $\Delta H = 67 \pm 3$ kJ/mol, sugerem a interpretação do fenômeno controlador do processo em termos de ancoramento das deslocações na ferrita devido à formação de *clusters* e/ou carbonetos de transição, para o qual se espera, para um processo controlado pela difusão induzida por um gradiente de concentração, uma lei cinética descrita pela equação de Harper com o expoente do tempo igual a 0,5 e um valor da energia de ativação da ordem de 70 kJ/mol.

A lei cinética, descrita pela equação de Harper com um expoente do tempo igual a 0,5 e energia de ativação de 118 \pm 10 kJ/mol, determinada para o segundo estágio de envelhecimento, está de acordo com a interpretação do fenômeno em termos de precipitação dos carbonetos ϵ e/ou η durante o revenimento da martensita na faixa de temperatura entre 120°C e 200°C.

REFERÊNCIAS

- I WATERSCHOOT, T.; DE, A.K.; VANDEPUTTE, S.; DE COOMAN, B.C. Static strain aging phenomena in cold-rolled dual-phase steels. *Metallurgical and Materials Transactions A*, v. 34, n. 3, p. 781-91, Mar. 2003.
- 2 SHERMAN, A. M.; ELDIS, G. T.; COHEN, M. The aging and tempering of iron-nickel-carbon martensites. *Metallurgical Transactions A*, v. 14, n. 6, p. 995-1005, June 1983.
- 3 BLECK, W.; BRÜHL, S. Bake hardening effects in advanced high strength steels. In: New Developments on Metallurgy and Applications of High Strength Steels. INTERNATIONAL CONFERENCE, 2008, Buenos Aires. [S.n.t.].
- 4 KRIEGER, M.; JANECEK, M.; ESTRIN, Y. Bake hardening behaviour of two cold rolled dual phase steels subjected to advanced galvanising processing routes. In: INTERNATIONAL CONFERENCE ON THERMO-MECHANICAL PROCESSING OF STEELS, 3., 2008, Padua. Milão: Association Italiana di Metalurgia, 2008
- 5 SCHOECK, G. Moving dislocations and solute atoms. Physical Review, v. 102, n. 6, p. 1458-9, 1956.
- 6 SAMEK, L.; DE MOOR, E.; PENNING, J.; SPEER, J.G.; DE COOMAN, B.C. Static strain aging of microstructural constituents in transformation-induced-plasticity steel. *Metallurgical and Materials Transactions A*, v. 39, n. 11, p. 2542-54, Nov. 2008.
- 7 PANDA, A.K.; GANGULY, R.I.; MISRA, S. Studies on kinetics of strain ageing in Nb, Ti, V-Bearing HSLA steels and a dual phase steel. *Steel Research*, v. 63, n. 3, p. 131-6, 1992.
- 8 BYUN, Y.S.; KIM, I.S.; KIM, S.J. Yielding and Strain aging behaviors of an Fe-0,07C-1,6Mn dual phase. *Transactions ISIJ*, v. 24, n. 5, p. 372-8, Sep. 1984.
- 9 BUONO, V. T. L.; GONZALEZ, B. M.; SILVA, E. M. P.; ANDRADE, M. S. Cinética do envelhecimento após deformação em fios de aços eutetóides. *Matéria*, v. 2, n. 1, jul. 1997.
- 10 DE, A.K.; VANDEPUTTE, S.; DE COOMAN, B.C. Kinetics of low temperature precipitation in a ULC-Bake hardening steel. Scripta Materialia, v. 44, n. 4, p. 695-700, Mar. 2001.
- 11 BAKER, L.J.; PARKER, J.D.; DANIEL, S.R. Mechanism of bake hardening in ultralow carbon steel containing niobium and titanium additions. *Materials Science and Technology*, v. 18, n. 5, p. 541-7, 2002.
- 12 WATERSCHOOT, T.; VERBEKEN, K.; DE COOMAN, B.C. Tempering kinetics of the martensitic phase in DP steel. *ISIJ International*, v. 46, n. 1, p. 138-46, Feb. 2006.
- 13 CHENG, L.; BRAKMAN, C.M.; KOREVAAR, B.M.; MITTEMEIJER, E.J. The tempering of iron-carbon martensite: dilatometric and calorimetric analysis. *Metallurgical Transactions A*, v. 19, n. 10, p. 2415-25, Oct. 1988.
- 14 LEMENT, B.S.; COHEN, M. A dislocation attraction model for the first stage of tempering. *Acta Metallurgica*, v. 4, p. 469-76, Sep. 1956.

Recebido em: 10/09/2009 Aprovado em: 17/11/2009