Laser surface remelting of Al-Mg and Al-Si-Mg alloys: microstructure and properties
Danusa Araújo de Moura, Anderson Thadeu Nunes, José Eduardo Spinelli
Abstract
Solidification is one of the most widely used manufacturing processes for metallic components. In the context of surface treatments, localized melting and resolidification represent an important application that deserves special attention. Among these, the Laser Surface Remelting (LSR) process is notable for creating a thin molten layer on the alloy surface. This occurs through the application of a continuous high-energy-density laser beam. Once the laser is removed, rapid solidification of the molten region is achieved by heat extraction into the remaining cold part of the material (the substrate), which has a much larger mass. Currently, there is great interest in new aluminum (Al) and magnesium (Mg) alloys for lightweight components such as pistons, manifolds, reducers, oil pans, and chassis, as well as in their laser treatments. Although LSR of Al-Cu alloys is well understood, there is a gap in studies on AlSi10Mg and Al-Mg alloys, which have high application potential. This short review addresses LSR applied to these less-explored alloys. Methods for determining cooling rates and their correlation with the resulting laser-modified microstructures will be presented. This study investigates the influence of laser surface remelting on the microstructure and mechanical properties of Al-Si10MgNi and Al-Mg-Sc alloys. The aim is to understand how alloy composition and laser parameters affect solidification features and their correlation with nanohardness and wear behavior. The results indicate that increasing Ni content (from 1Ni to 3Ni) in Al-Si10Mg alloys refines the microstructure and develops a third phase (Al3 Ni), which increases the hardness. In Al-Mg-Sc alloys, higher Mg levels and slower scanning speeds promote cellular coarsening and affect hardness distribution across the laser melt pool.
Keywords
Referências
1 Kalita SJ. Microstructure and corrosion properties of diode laser melted friction stir weld of aluminum alloy 2024 T351. Applied Surface Science. 2011;257(9):3985-3997. http://doi.org/10.1016/j.apsusc.2010.11.163.
2 Richman RH, McNaughton WP. Correlation of cavitation erosion behavior with mechanical properties of metals. Wear. 1990;140(1):63-82. http://doi.org/10.1016/0043-1648(90)90122-Q.
3 Zhong M, Liu W. Laser surface cladding: the state of the art and challenges. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science. 2010;224(5):1041-1060. http://doi.org/10.1243/09544062JMES1782.
4 Dubourg L, Archambeault J. Technological and scientific landscape of laser cladding process in 2007. Surface and Coatings Technology. 2008;202(24):5863-5869. http://doi.org/10.1016/j.surfcoat.2008.06.122.
5 Singh A, Harimkar SP. Laser surface engineering of magnesium alloys: a review. Journal of the Minerals Metals & Materials Society. 2012;64(6):716-733. http://doi.org/10.1007/s11837-012-0340-2.
6 Steen PH, Ehrhard P, Schüssler A. Depth of melt- pool and heat- affected zone in laser surface treatments. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 1994;25(2):427-435. http://doi.org/10.1007/BF02647988.
7 Cheung N, Ierardi M, Garcia A, Vilar R. The use of artificial intelligence for the optimization of a laser transformation hardening process. Lasers in Engineering. 2000;10:275-291.
8 Kannatey-Asibu E Jr. Principles of laser materials processing. United States of America: John Wiley & Sons, Ed.; 2009.
9 Bi G, Chen S, Jiang J, Li Y, Chen T, Chen X-B, et al. Effects of laser surface remelting on microstructure and corrosion properties of Mg-12Dy-1.1Ni alloy. Journal of Materials Engineering and Performance. 2023;32(6):2587-2597. http://doi.org/10.1007/s11665-022-06933-y.
10 Ramakrishnan BP, Lei Q, Misra A, Mazumder J. Effect of laser surface remelting on the microstructure and properties of Al-Al2Cu-Si ternary eutectic alloy. Scientific Reports. 2017;7(1):13468. http://doi.org/10.1038/s41598- 017-13953-5. PMid:29044169.
11 Kurz W, Fisher D. Fundamentals of solidification. 4th ed. Switzerland: Trans Tech Publications; 1998. http://doi. org/10.4028/www.scientific.net/RC.35.
12 Kuai Z, Li Z, Liu B, Liu W, Yang S. Effects of remelting on the surface morphology, microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. Materials Chemistry and Physics. 2022;285:125901. http://doi.org/10.1016/j.matchemphys.2022.125901.
13 Boschetto A, Bottini L, Pilone D. Effect of laser remelting on surface roughness and microstructure of AlSi10Mg selective laser melting manufactured parts. International Journal of Advanced Manufacturing Technology. 2021;113(9-10):2739-2759. http://doi.org/10.1007/s00170-021-06775-3.
14 Han Q, Jiao Y. Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting. International Journal of Advanced Manufacturing Technology. 2019;102(9-12):3315-3324. http://doi. org/10.1007/s00170-018-03272-y.
15 Masood Arif Bukhari S, Husnain N, Arsalan Siddiqui F, Tuoqeer Anwar M, Abbas Khosa A, Imran M, et al. Effect of laser surface remelting on microstructure, mechanical properties and tribological properties of metals and alloys: a review. Optics & Laser Technology. 2023;165:109588. http://doi.org/10.1016/j.optlastec.2023.109588.
16 Yilbas BS, Arif AFM, Karatas C, Raza K. Laser treatment of aluminum surface: analysis of thermal stress field in the irradiated region. Journal of Materials Processing Technology. 2009;209(1):77-88. http://doi.org/10.1016/j. jmatprotec.2008.01.047.
17 de Moura DA, de Gouveia GL, Figueira G, Garcia A, Gargarella P, Spinelli JE. Laser remelting of AlSi10Mg(-Ni) alloy surfaces: influence of ni content and cooling rate on the microstructure. International Journal of Advanced Manufacturing Technology. 2022;120(11-12):8117-8132. http://doi.org/10.1007/s00170-022-09263-4.
18 Zhong M, Liu W, Zhang H. Corrosion and wear resistance characteristics of NiCr coating by laser alloying with powder feeding on grey iron liner. Wear. 2006;260(11-12):1349-1355. http://doi.org/10.1016/j.wear.2005.09.033.
19 Cheung N, Cruz KAS, Cante MV, Spinelli JE, Ierardi MCF, Garcia A. Numerical and experimental analysis of rapidly solidified laser remelted Al 5wt Pct Ni surfaces. International Journal of Microstructure and Materials Properties (IJMMP). 2010;5(2/3):193. http://doi.org/10.1504/IJMMP.2010.035939.
20 Steen WM, Mazumder J. Laser material processing. London: Springer; 2010. http://doi.org/10.1007/978-1-84996-062-5. 21 Liu YJ, Liu Z, Jiang Y, Wang GW, Yang Y, Zhang LC. Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. Journal of Alloys and Compounds. 2018;735:1414-1421. http://doi.org/10.1016/j. jallcom.2017.11.020.
22 Tomida S, Nakata K, Shibata S, Zenkouji I, Saji S. Improvement in wear resistance of hyper-eutectic Al Si cast alloy by laser surface remelting. Surface and Coatings Technology. 2003;169-170:468-471. http://doi.org/10.1016/S0257- 8972(03)00100-2.
23 Osório WR, Cheung N, Peixoto LC, Garcia A. Corrosion resistance and mechanical properties of an Al 9wt% Si alloy treated by laser surface remelting. International Journal of Electrochemical Science. 2009;4(6):820-831. http://doi.org/10.1016/S1452-3981(23)15186-8.
24 Roscher M, Sun Z, Jägle EA. Designing Al alloys for laser powder bed fusion via laser surface melting: microstructure and processability of 7034 and modified 2065. Journal of Materials Processing Technology. 2024;326:118334. http://doi.org/10.1016/j.jmatprotec.2024.118334.
25 Gill SC, Zimmermann M, Kurz W. Laser Resolidification of the AlAl2Cu Eutectic: The Coupled Zone. Acta Metallurgica et Materialia. 1992;40(11):2895-2906. http://doi.org/10.1016/0956-7151(92)90454-M.
26 Zimmermann M, Carrard M, Gremaud M, Kurz W. Characterization of the banded structure in rapidly solidified Al Cu alloys. Materials Science and Engineering A. 1991;134:1278-1282. http://doi.org/10.1016/0921- 5093(91)90973-Q.
27 Liu YL, Kang SB. Solidification and segregation of Al-Mg Alloys and influence of alloy compositionand cooling rate. Materials Science and Technology. 1997;13(4):331-336. http://doi.org/10.1179/mst.1997.13.4.331.
28 Zhang C, Chai L, Liu Y, Li Z, Zhang F, Li X, et al. Correlating microstructural features with improved wear and corrosion resistance of laser surface remelted A356 alloy at different scanning speeds. Materials Characterization. 2023;202:113021. http://doi.org/10.1016/j.matchar.2023.113021.
29 Quazi MM, Fazal MA, Haseeb ASMA, Yusof F, Masjuki HH, Arslan A. Laser-based surface modifications of aluminum and its alloys. Critical Reviews in Solid State and Material Sciences. 2016;41(2):106-131. http://doi.org/1 0.1080/10408436.2015.1076716.
30 Ashby MF, Easterling KE. The transformation hardening of steel surfaces by laser beams—I. Hypo-eutectoid steels. Acta Metallurgica. 1984;32(11):1935-1948. http://doi.org/10.1016/0001-6160(84)90175-5.
31 Liu B, Li B-Q, Li Z, Bai P, Wang Y, Kuai Z. Numerical investigation on heat transfer of multi-laser processing during selective laser melting of AlSi10Mg. Results in Physics. 2019;12:454-459. http://doi.org/10.1016/j. rinp.2018.11.075.
32 Cruz KS, Meza ES, Fernandes FAP, Quaresma JMV, Casteletti LC, Garcia A. Dendritic arm spacing affecting mechanical properties and wear behavior of Al-Sn and Al-Si alloys directionally solidified under unsteadystate conditions. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2010;41(4):972-984. http://doi.org/10.1007/s11661-009-0161-2.
33 Kou S. Welding metallurgy. 3rd ed. United States of America: John Wiley & Sons; 2021.
34 Pinto MA, Cheung N, Ierardi MCF, Garcia A. Microstructural and Hardness investigation of an aluminum–copper alloy processed by laser surface melting. Materials Characterization. 2003;50(2-3):249-253. http://doi.org/10.1016/ S1044-5803(03)00091-3.
35 Yao Z, Ren W, Allison J. Microstructure and microsegregation characterization of laser surfaced remelted Al-3wt%Cu alloys. Research Square. 2021. Preprint. http://doi.org/10.21203/rs.3.rs-1002008/v1.
36 Wang J, Wang H, Gao H, Yang J, Zhang M, Cheng X, et al. Crystal growth for different substrate orientations during laser directed solidification of single crystal superalloys. Journal of Alloys and Compounds. 2023;957:170219. http://doi.org/10.1016/j.jallcom.2023.170219.
37 Hearn W, Bogno A-A, Spinelli J, Valloton J, Henein H. Microstructure solidification maps for Al-10 Wt Pct Si alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2019;50(3):1333-1345. http://doi.org/10.1007/s11661-018-5093-2.
38 Hosch T, England LG, Napolitano RE. Analysis of the high growth-rate transition in Al–Si eutectic solidification. Journal of Materials Science. 2009;44(18):4892-4899. http://doi.org/10.1007/s10853-009-3747-6.
39 Liu Y, Luo L, Han C, Ou L, Wang J, Liu C. Effect of Fe, Si and cooling rate on the formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–0.8Mn alloy. Journal of Materials Science and Technology. 2016;32(4):305-312. http://doi.org/10.1016/j.jmst.2015.10.010.
40 Sha M, Wu S, Wang X, Wan L, An P. Effects of cobalt content on microstructure and mechanical properties of hypereutectic Al–Si alloys. Materials Science and Engineering A. 2012;535:258-263. http://doi.org/10.1016/j. msea.2011.12.077.
41 Zhang W, Liu Y, Yang J, Dang J, Xu H, Du Z. Effects of Sc content on the microstructure of As-Cast Al-7wt.%. Materials Characterization. 2012;66:104-110. http://doi.org/10.1016/j.matchar.2011.11.005.
42 Chen X, Liu H, Zhan Y, Tang H. Microstructure optimization and mechanical properties of lightweight Al– Mg 2 Si in-Situ composite. International Journal of Materials Research. 2016;107(9):842-850. http://doi. org/10.3139/146.111405.
43 Canté MV, Spinelli JE, Ferreira IL, Cheung N, Garcia A. Microstructural development in Al-Ni alloys directionally solidified under unsteady-state conditions. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2008;39(7):1712-1726. http://doi.org/10.1007/s11661-008-9536-z.
44 Peres MD, Siqueira CA, Garcia A. Macrostructural and microstructural development in Al–Si Alloys directionally solidified under unsteady-state conditions. Journal of Alloys and Compounds. 2004;381(1-2):168-181. http://doi. org/10.1016/j.jallcom.2004.03.107.
45 Gomes LF, Silva BL, Garcia A, Spinelli JE. Dendritic growth, solidification thermal parameters, and Mg content affecting the tensile properties of Al-Mg-1.5 Wt Pct Fe alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2017;48(4):1841-1855. http://doi.org/10.1007/s11661-017-3978-0.
46 Yang G, Fu B, Dong T, Li G. Effect of laser remelting on the microstructure and properties of the aluminum high silicon alloy coating. Journal of Materials Processing Technology. 2024;324:118278. http://doi.org/10.1016/j. jmatprotec.2023.118278.
47 Gomes LG. Microestrutura dendrítica, macrossegregação e microporosidade na solidificação de ligas ternárias Al-Si-Cu [tese]. Campinas: Universidade Estadual de Campinas; 2012. http://doi.org/10.47749/T/ UNICAMP.2012.865887.
48 Nunes AT, de Gouveia GL, Riva R, Capella AG, Garcia A, Spinelli JE. Laser resolidification of Al-5Mg-0.1Sc alloy: growth of cells and banded structures. Journal of Alloys and Compounds. 2024;973:172889. http://doi.org/10.1016/j. jallcom.2023.172889.
49 Nunes AT, Riva R, Capella AG, Garcia A, Spinelli JE. Influence of Mg content on microstructure coarsening, molten pool size, and hardness of laser remelted Al(- x) –Mg–Sc alloys. ACS Omega. 2024;9(36):38248-38261. http://doi. org/10.1021/acsomega.4c06126. PMid:39281895.
50 Zweiacker KW, Liu C, Gordillo MA, McKeown JT, Campbell GH, Wiezorek JMK. Composition and automated crystal orientation mapping of rapid solidification products in hypoeutectic Al-4 at.%. Acta Materialia. 2018;145:71-83. http://doi.org/10.1016/j.actamat.2017.11.040.
51 Wiezorek JMK, Liu C, Farjami S, Zweiacker KW, Mckeown JT, Campbell GH. Composition and crystal orientation mapping of nano-scale multi-phase rapid solidification microstructures in hypo-eutectic Al-Cu alloy thin films. Microscopy and Microanalysis. 2017;23(S1):1078-1079. http://doi.org/10.1017/S1431927617006055.
52 Boettinger WJ, Shechtman D, Schaefer RJ, Biancaniello FS. The effect of rapid solidification velocity on the microstructure of Ag-Cu Alloys. Metallurgical Transactions. A, Physical Metallurgy and Materials Science. 1984;15(1):55-66. http://doi.org/10.1007/BF02644387.
Submetido em:
19/06/2025
Aceito em:
18/09/2025
