Evaluation of advanced refractories to replace water-cooled panels in steelmaking electric arc furnaces
Pedro Henrique Couto Almeida, Victor Carlos Pandolfelli
Abstract
The electric arc furnace (EAF) process is gaining prominence in global steel production due to its lower CO2 emissions and energy consumption. However, the continued use of water-cooled panels in the EAF upper sidewall presents serious safety risks, primarily due to the potential for water-steel interactions that may lead to explosions. Replacing these components with refractory panels can eliminate this risk while significantly reducing heat loss and water usage. This study evaluates five commercially available refractory castables using laboratory testing and thermodynamic simulations to determine their suitability for this application. An alumina-spinel (AM) castable emerged as the most promising material, offering an optimal balance of mechanical strength, thermal shock resistance, slag resistance, and refractoriness making it a strong candidate for safer and more efficient EAF operation.
Keywords
Referências
1 Silva JNA. Estudo Teórico e Experimental do Efeito do Ciclo Térmico no Painel Refrigerado de Forno Elétrico a Arco [thesis]. Curitiba: Universidade Federal do Paraná; 2014.
2 Ferguson S, Zsamboky N. Electric Arc Furnace (EAF) Explosions: A Deadly but Preventable Problem. Iron Steel Technol. 2017;14(1):30-35.
3 Gupta J. Water leakage may have caused blast at Metal and Steel Factory [Internet]. New Delhi: The Times of India; 2017 [cited 2025 May 2]. Available at: http://timesofindia.indiatimes.com/articleshow/57634451.cms?utm_ source=contentofinterest&utm_medium=text&utm_campaign=cppst
4 Goldstein J. Electric arc furnace explosion at Pueblo, Colorado steel mill leaves eight workers seriously injured [Internet]. Oak Park: World Socialist Web Site; 2021 [cited 2025 May 2]. Available at: https://www.wsws.org/en/ articles/2021/06/03/pueb-j03.html
5 Bowman B, Jones JAT, LeFrank PA. Electric Furnace Steelmaking. In: Fruehan RJ, editor. The Making, Shaping and Treating of Steel: Steelmaking and Refining Volume. Pittsburgh (PA): The AISE Steel Foundation; 1998. p. 525-60.
6 Wucher J. FEA Manual de Instalação: Revestimento de um Forno Elétrico a Arco. Internal document. Vienna: RHI Magnesita; 2018.
7 Bültena R, Ertl M. Metallurgisches Gefäß, insbesondere Elektrolichtbogenofen. European Patent EP 2 460 895 A2. 2011 jun. 12.
8 Luz AP, Braulio MAL, Pandolfelli VC. Refractory castable engineering. Baden: Göller Verlag; 2015.
9 Associação Brasileira de Normas Técnicas. ABNT NBR 13202: Materiais refratários – Determinação do choque térmico pelo módulo de elasticidade residual (Refractory materials – Determination of thermal shock by residual modulus of elasticity). Rio de Janeiro: ABNT; 2015.
10 ASTM C830. Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure. 2000.
11 Zhang W, Dai W, Chiyoda N. Research on thermal shock resistance of mullite-bauxite-silicon carbide castable refractory. Chinese Journal of Geochemistry. 2012;31:204-208.
12 Sarkar R. Binders for Refractory Castables: An Overview. Interceram. 2020;69:44-53.
13 Lima LKS, Silva KR, Menezes RR, Santana LNL, Lira HL. Microstructural characteristics, properties, synthesis and applications of mullite - A review. Cerâmica. 2022;68:126-142.
14 Schacht CA. Refractories handbook. Pittsburgh (PA): CRC Press; 2004.
15 Braulio MAL, Rigaud M, Buhr A, Parr C, Pandolfelli VC. Spinel-containing alumina-based refractory castables. Ceramics International. 2011;37:1705-1724.
16 Jiang W, Nadeau G, Zaghib K, Kinoshita K. Thermal analysis of the oxidation of natural graphite – effect of particle size. Thermochimica Acta. 2000;351:85-93.
17 Vaughn WL, Maahs HG. Active-to-Passive Transition in the Oxidation of Silicon Carbide and Silicon Nitride in Air. Journal of the American Ceramic Society. 1990;73:1540-1543.
18 Bitencourt CS, Pandolfelli VC. Carbon containing refractories: properties, characteristics and variables in their composition. Cerâmica. 2013;59:84-114.
Submetido em:
17/10/2025
Aceito em:
24/11/2025
