Continuous heating transformation diagram and austenitic grain refinement in a commercial brazilian boron steel
Alice Silva Gonçalves, Paulo Sérgio Moreira, Geraldo Lúcio de Faria
Abstract
Although conventional heat treatment methods have been widely employed for decades, their limitations have become increasingly evident, particularly regarding energy inefficiency, high operational costs, and emissions associated with long heating and cooling cycles. In this context, fast-heating techniques such as Ultra-Fast Heating (UFH) have emerged as promising alternatives by combining sustainability, high productivity, and the potential for microstructural refinement, which can lead to superior mechanical properties in steels. This study aimed to determine the Continuous Heating Transformation (CHT) diagram and to evaluate the effect of heating rate on the austenitic grain size (AGS) of a commercial Brazilian boron steel. Dilatometric tests were performed under different heating rates to determine the critical austenitizing temperatures (Ac1 and Ac3 ) and to construct the corresponding CHT diagram. Additionally, microstructural analyses were carried out to reveal and quantify the AGS for each condition. The results showed that increasing the heating rate shifts the critical transformation temperatures to higher values, highlighting the kinetic effects on phase transformations. Moreover, higher heating rates promoted significant grain refinement, reducing the average grain size from approximately 60 μm to about 10 μm solely through thermal control. These findings demonstrate the potential of UFH as an effective tool for microstructural engineering, enabling the optimization of mechanical properties while improving the energy efficiency of industrial heat treatment processes.
Keywords
References
1 Kumar K, Dixit S, Haq MZ, Vateva KM, Vatin NI, Rekha M, et al. Revolutionising heat treatment: novel strategies for augmented performance and sustainability. E3S Web of Conferences. 2023;430:01200. https://doi.org/10.1051/ e3sconf/202343001200.
2 Ma S, Yang X, Fu L, Shan A. Achieving high strength-ductility synergy in nickel aluminum bronze alloy via a quenching-aging-tempering heat treatment. Materials Letters. 2023;333:133661. https://doi.org/10.1016/j. matlet.2022.133661.
3 Xi N, Tang K, Fang X, Li Y, Duan Y, Huang K. Enhanced comprehensive properties of directed energy deposited Inconel 718 by a novel integrated deposition strategy. Journal of Materials Science and Technology. 2023;141:42- 55. https://doi.org/10.1016/j.jmst.2022.09.026.
4 Banis A, Papaefthymiou S. Microstructure characterization of an ultra-fast heated medium carbon chromiummanganese high strength steel. International Journal of Metallurgy and Metal Physics. 2018;3:021. https://doi. org/10.35840/2631-5076/9221.
5 Banis A, Duran EH, Bliznuk V, Sabirov L, Petrov RH, Papaefthymiou S. The effect of ultra-fast heating on the microstructure, grain size and texture evolution of a commercial low-C, medium-Mn DP steel. Metals. 2019;9(8):877. https://doi.org/10.3390/met9080877.
6 Knijf D, Puype A, Fojer C, Petrov R. The influence of ultra-fast annealing prior to quenching and partitioning on the microstructure and mechanical properties. Materials Science and Engineering A. 2015;627:198-207. https://doi. org/10.1016/j.msea.2014.12.118.
7 Han J, Yu H, Wang K, Hao B, Liu S. Study of the softening behavior of cold-rolled ribbed steel bars under ultra-fast heating. Journal of Materials Science. 2023;58(47):17873-17889. https://doi.org/10.1007/s10853-023-09127-6.
8 Tan X, Lu W, Rao X. Effect of ultra-fast heating on microstructure and mechanical properties of coldrolled low-carbon low-alloy Q&P steels with different austenitizing temperature. Materials Characterization. 2022;191:112086. https://doi.org/10.1016/j.matchar.2022.112086.
9 Oliveira DFM, Faria GL, Moreira PS. Efeito da microestrutura prévia e da taxa de aquecimento no processo de austenitização de um aço C-Mn-Si aplicado na indústria automotiva. In: 76º Congresso Anual da ABM - Internacional; 2023; São Paulo. Anais... São Paulo: ABM; 2023. p. 2545–2558. https://doi.org/10.5151/2594-5327- 39383.
10 Javaheri V, Kolli S, Grande B, Porter D. Insight into the induction hardening behavior of a new 0.40% C microalloyed steel: Effects of initial microstructure and thermal cycles. Materials Characterization. 2019;149:165- 183. https://doi.org/10.1016/j.matchar.2019.01.029.
11 Meshkov YY, Pereloma EV. The effect of heating rate on reverse transformations in steels and Fe-Ni-based alloys. In: Pereloma E, Edmonds DV, editors. Phase transformations in steels: fundamentals and diffusion-controlled Transformations. Cambridge: Woodhead Publishing; 2012. p. 581-618. https://doi.org/10.1533/9780857096104.4.5 81.
12 Macedo MQ, Cota AB, Araújo FG. The kinetics of austenite formation at high heating rates. REM. Revista Escola de Minas. 2011;64(2):163-167. https://doi.org/10.1590/S0370-44672011000200005. 13 Settimí AG, Chukin D, Pezzato L, Gennari C, Brunelli K, Dabalá M. The impact of high heating rates on the austenitization process of 18NiCrMo5 steel. Mater Phys Mech. 2019;42(6):717-730.
14 Magalhães CHXM, Campos PHK, Faria GL. Efeito da temperatura de austenitização no tamanho de grão austenítico e nas temperaturas de início de transformação de fases em um aço do tipo TRIP 780. In: 75º Congresso da ABM; 2022; São Paulo. Anais... São Paulo: ABM; 2022. p. 58-67.
15 Gonçalves AS, Faria GL, Moreira PS. Efeito da taxa de aquecimento sobre a cinética de austenitização de um aço ao boro comercial brasileiro. In: 77º Congresso Anual da ABM - Internacional; 2024; São Paulo. Anais... São Paulo: ABM; 2024. p. 743-755. https://doi.org/10.5151/2594-5327-40570.
16 Deng YG, Li Y, Di H, Misra RDK. Effect of heating rate during continuous annealing on microstructure and mechanical properties of high-strength dual-phase steel. Journal of Materials Engineering and Performance. 2019;28(8):4556-4564. https://doi.org/10.1007/s11665-019-04253-2.
17 Valdes-Tabernero MA, Celada-Casero C, Sabirov I, Kumar A, Petrov RH. The effect of heating rate and soaking time on microstructure of an advanced high strength steel. Materials Characterization. 2019;155:109822. https://doi. org/10.1016/j.matchar.2019.109822.
18 Brooks CR. Principles of the austenitization of steels. London: Elsevier Science Publishers; 1992. 217 p.
19 Pimenta NAB, Moreira PS, Faria GL. Avaliação da formulação de reativos à base de ácido pícrico visando a revelação do grão austenítico prévio em diferentes tipos de aços. Tecnologica em Metalurgia, Materiais e Mineração. 2021;18:e2367. https://doi.org/10.4322/2176-1523.20212367.
20 Faria G, Cardoso R, Moreira P. Development of an oxidation method for prior austenite grain boundary revelation. Metallography, Microstructure, and Analysis. 2018;5(5):533-541. https://doi.org/10.1007/s13632-018-0470-1.
21 Lelis AJD. Proposição e avaliação da eficácia de um método de contraste por oxidação subcrítica para revelação de grãos austeníticos prévios em aços [monografia]. Ouro Preto: Universidade Federal de Ouro Preto; 2022.
22 American Society for Testing and Materials – ASTM. ASTM E112 – 13: Standard test method for determining average grain size. West Conshohocken: ASTM International; 2021. 28 p.
23 Oliveira FLG, Vilela JMC, Andrade MS, Cota AB. Evolução microestrutural da austenita no aquecimento contínuo de um aço de baixo carbono. In: 60º Congresso Anual da ABM; 2005; Belo Horizonte. Anais... São Paulo: ABM; 2005. p. 2272–2282. https://doi.org/10.5151/2594-5327-2005-13538-0232.
24 Liu YG, Li MQ, Dang XL. Effect of heating temperature and heating rate on austenite in the heating process of 300M steel. Materials Science Forum. 2013;749:260-267. https://doi.org/10.4028/www.scientific.net/MSF.749.260.
25 Maropoulos S, Karagiannis S, Ridley N. Factors affecting prior austenite grain size in low alloy steel. Journal of Materials Science. 2007;42(4):1309-1320. https://doi.org/10.1007/s10853-006-1191-4.
26 Hu KH, Liu XD, Feng GW, Han RD. The effect of heating process on strength and the original austenite grain size of hot forming parts. Advanced Materials Research. 2014;1063:28-31. https://doi.org/10.4028/www.scientific.net/ AMR.1063.28.
Submitted date:
10/20/2025
Accepted date:
11/27/2025
