Trends in access and transportation costs in underground mining
Fernando Alves Cantini Cardozo; Carlos Otávio Petter
Abstract
Underground mining entails significant investments in accesses, such as ramps and shafts, impacting both initial investment (CAPEX) and operational costs (OPEX). Studies offer models to estimate these costs, considering depth and production rate. Operational transportation costs vary with production and depth, with different studies recommending ramps, shafts, or conveyor belts for economic efficiency. The share of transportation costs in total OPEX is relevant and influenced by the adopted strategy, with models estimating these costs considering depth and required support. In summary, access and transportation costs in underground mining are considerable, with the choice of method influenced by technical and economic factors. This article provides a review and evaluation of implementation and operational transportation costs in underground mines, indicating a trend of lower costs for shaft transportation with mine deepening. The evaluated studies also provide estimates of average costs to assist in initial project estimates.
Keywords
References
1 Camm TW, Stebbins SA. Simplified cost models for underground mine evaluation: a handbook for quick prefeasibility cost estimates-revised edition. Montana: Mining Engineering Department, Montana Technological University; 2023 [cited 2025 Jan 16]. Available at: https://digitalcommons.mtech.edu/mine_engr/16/
2 D’Arrigo RF. Modelo de estimativa de custos operacionais e de capital em projetos de mineração em fase conceitual baseado no modelo de O’Hara [thesis]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2012.
3 O’Hara TA, Suboleski SC. Costs and cost estimation. In: Hartman HL, editor. SME mining engineering handbook. Littleton: Colo; 1992. p. 405-24.
4 Salama A. Haulage system optimization for underground mines a discrete event simulation and mixed integer programming approach [thesis]. Lule: Lule University of Technology; 2014.
5 Araújo VIAB, Petter CO, Cardozo FAC, Petter RA. Modelo de estimativa dos custos de capital e operacional de lavra subterrânea através de curvas parametrizas obtidas por estudos de viabilidade. In: Anais X CBMINA. Belo Horizonte: IBRAM; 2021 [cited 2025 Jan 16]. Available at: https://ibram.org.br/wp-content/uploads/2021/04/T-67- Vinicius-Igor-Albuquerque-Batista-de-Araujo.pdf
6 Araújo VIAB. Aderência das estimativas dos custos de capital e operacional do MAFMINE e das equações de Camm e Stebbins em projetos de lavra subterrânea [Master Thesis]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2023.
7. Cardozo FAC, Petter CO, Petter RA. Multicriteria Analysis and ESG Approach in the Choice of Underground Mine Access. In: ABM Proceedings. São Paulo: Editora Blucher.; 2023 [cited 2025 Jan 16]. Available at: http:// abmproceedings.com.br/ptbr/article/anlise-multicritrio-e-abordagem-esg-na-escolha-de-acesso-de-mina-subterrnea.
8 Hashemi AS, Sattarvand J. Application of ARENA simulation software for evaluation of open pit mining transportation systems: a case study. In: Niemann-Delius C, editor. Proceedings of the 12th International Symposium Continuous Surface Mining. Cham: Springer International Publishing; 2015 [cited 2025 Jan 16]. p. 213-24. Available at: https://link.springer.com/10.1007/978-3-319-12301-1_20
9 Karikari YS, Askari-Nasab H. A Comprehensive Simulation Model for Mining Operations: Development, Implementation, and Validation Using HaulSim. In: Badiozamani, MM, Pourrahimian, Y, Ben-Awuah, E, Moradi Afrapoli, A and AskariNasab, H, editors Mining Optimization Laboratory (MOL) – Report Twelve. Edmonton, Canada: University of Alberta; 2024. p. 407-427.
10 Gonen A, Malli T, Kose H. Selection of ore transport system for a metalliferous underground mine / Dobór systemu transportu rud w kopalni podziemnej rud metalu. Archives of Mining Sciences. 2012;57(3):779-785.
11 Rupprecht S. Mine development - Access to deposit. Johannesburg: The Southern African Institute of Mining and Metallurgy. 2012.
12 Elevli B, Demerci A, Dayi O. Underground haulage selection: shaft or ramp for a small-scale underground mine. Journal of the Southern African Institute of Mining and Metallurgy. 2002;102(5):255-260.
13 Silva CMDPS, Cavalcanti CGB, Silva DDPS, Soares IB, Oliveira JAS, et al. LAB Fit ajuste de curvas: um software em português para tratamento de dados experimentais. Revista Brasileira de Ensino de Física. 2004;26(4):419-427.
14 Paraskevopoulou C, Benardos A. Assessing the construction cost of Greek transportation tunnel projects. Tunnelling and Underground Space Technology. 2013;38:497-505.
15 Moser P. Primary development of underground hard rock mines. In: Ayres da Silva, LA; Chaves, AP, editors. In: Symposium on Mine Planning and Equipment Selection. Rotterdam: A.A. Balkema; 1996. p. 31-3.
16 De la Vergne J. Hard rock miner’s handbook. Edmonton: Stantec Consulting; 2008.
17 Gromov EV, Belogorodtsev OV. Improvement of access methods for ore reserves beyond ultimate limits of open pits. Eurasian Mining. 2019;(1):16-20.
18 Ong LL. Burgernomics: the economics of the Big Mac standard. Journal of International Money and Finance. 1997;16(6):865-878.
19. Camm TW, Stebbins SA. Simplified Cost Models for Underground Mine Evaluation: A Handbook for Quick Prefeasibility Cost Estimates. Butte: Montana Technological University; 2020.
20 Nagle AJ. Aide a l’estimation des parametres economiques d’un projet minier dans les etudes de prefaisabilite [thesis.]. Paris: ENMP; 1988
21 Petroutsatou C, Lambropoulos S, Pantouvakis JP. Road tunnel early cost estimates using multiple regression analysis. Oper Res Int J. 2006;6(3):311-322.
22 Jacobs W, Hodkiewicz MR, Braunl T. A cost–benefit analysis of electric loaders to reduce diesel emissions in underground hard rock mines. IEEE Transactions on Industry Applications. 2015;51(3):2565-2573.
Submitted date:
01/16/2025
Accepted date:
04/27/2025